首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
如何充分发挥小型通信干扰装备的作战效能是指挥员面临的棘手问题。本文将战术指标——干扰后的通信畅通区覆盖程度作为评估通信干扰装备分配优劣的指标,分别建立了单机和多部干扰时的通信干扰有效压制区和通信畅通区边界的计算模型,并给出了通信干扰有效压制区和通信畅通区面积的计算方法。构建了基于机会约束规划的空域频域通信干扰任务分配模型,并设计了混合蚁群算法和遗传算法的模型求解算法。最后进行了仿真实验,验证分析了模型和算法的合理性。研究成果为通信对抗战术计算和作战运用研究拓展了思路。  相似文献   

2.
应用模糊机会约束规划理论,研究了不确定环境下的雷达干扰资源优化分配问题。在对雷达目标进行整合的基础上,综合考虑雷达干扰资源分配过程中的不确定因素,建立了双层模糊机会约束混合整数规划模型。并根据可能性测度理论得到双层混合整数规划模型,通过求解混合整数线性规划来获取模型的最优解。计算实例表明方法的优越性和有效性。  相似文献   

3.
投掷式通信干扰机是未来通信对抗装备发展的一种趋势,对任务区域内无线战术通信实施投掷式干扰时,需要在干扰压制概率满足一定置信水平的条件下最小化干扰机的需求量。建立了基于随机机会约束规划的投掷式通信干扰兵力部署模型,采用随机模拟、遗传算法相结合的混合智能算法求解模型,并通过实例分析验证了模型的有效性。  相似文献   

4.
在分析影响雷达网系统效能的几个重要的不确定因素基础上,应用随机机会约束规划,分别建立雷达网中雷达数量估计和部署的数学模型,并用混合智能算法求解建立的数学模型,得到随机机会约束条件下的最优雷达网结构。  相似文献   

5.
投掷式通信干扰机是未来通信对抗装备发展的一种趋势,针对其压制无线战术通信的兵力部署优化问题,引入\"通信干扰压制概率\"和\"通信干扰效益\"两个指标,建立了基于双层规划的兵力部署优化模型,上层规划以整体通信干扰效益最大化为目标,下层为随机机会约束规划,以通信干扰压制概率满足一定置信水平为约束,以干扰机需求量最小化为目标。采用随机模拟、遗传算法和动态规划相结合的混合智能算法求解双层规划模型,并通过算例分析验证了模型的有效性。  相似文献   

6.
应用不确定理论,研究了雷达对抗装备配置优化问题。在给出了雷达对抗装备侦察效果、干扰效果和反辐射摧毁效果评定模型的基础上,综合考虑了雷达对抗双方装备部署位置和反辐射武器攻击误差等不确定性因素,建立了雷达对抗装备配置优化模型,并利用混合智能算法对模型进行求解。算例表明了方法的有效性。  相似文献   

7.
本文引进压制概率这一概念作为衡量雷达对抗作战效能的数量指标 ,给出了地对空雷达对抗压制概率的计算方法。利用搜索论、规划论、雷达原理、雷达对抗原理建立了一个地对空雷达对抗干扰任务分配模型  相似文献   

8.
无人机集群作战得到广泛的应用,其路径规划和任务分配技术的研究是无人机集群作战的关键步骤.然而,传统的方式是将路径规划和任务分配分别求解计算,这样的处理方式未考虑任务分配和路径优化的耦合关系,会造成路径交叉、资源分配不均匀的问题.针对多任务场景中的多子群任务分配和路径规划问题,将任务分配和路径规划联合优化,提出了改进的蚁...  相似文献   

9.
现代作战,参战兵种多,炮兵的火力单位和类型更为复杂,不同的火力单位具有不同的毁伤效果,如何用最小的代价取得最大的军事效益,是一种火力任务分配的优化问题.根据不同炮种和目标的特点,建立在一定约束条件下的炮兵火力任务分配模型,并将其转化为指派问题,运用匈牙利算法求解,达到优化分配火力任务的目的.通过仿真计算证明这是辅助指挥员进行射击决策的一种有效手段,为作战指挥理论提供了一种新的数学模型.  相似文献   

10.
定量研究通信对抗侦察装备分配优化问题能够为增大侦察效率提供帮助。首先,建立了通信对抗侦察装备需求估算模型;然后,结合搜索论、非线性规划及不确定规划等方法,分别从时间、频段和数量3个角度建立了相关的区域分配优化模型。最后,使用混合智能算法进行了实例的仿真计算,分析了计算结果。研究成果对侦察方案的制定具有辅助决策作用。  相似文献   

11.
针对多波束干扰系统同时干扰多个目标的资源分配问题,通过分析目标分配算法的一般流程及涉及到的关键问题和技术难题,提出了基于实战化和有限条件的针对多波束干扰系统的非线性0-1整数规划数学模型。针对该模型采取开源软件SCIP进行求解,最后给出数值仿真来说明模型和算法的有效性。  相似文献   

12.
    
There are n boxes with box i having a quota value Balls arrive sequentially, with each ball having a binary vector attached to it, with the interpretation being that if Xi = 1 then that ball is eligible to be put in box i. A ball's vector is revealed when it arrives and the ball can be put in any alive box for which it is eligible, where a box is said to be alive if it has not yet met its quota. Assuming that the components of a vector are independent, we are interested in the policy that minimizes, either stochastically or in expectation, the number of balls that need arrive until all boxes have met their quotas. © 2014 Wiley Periodicals, Inc. 62:23–31, 2015  相似文献   

13.
研究不确定条件下的通信干扰装备配置方案优选问题具有重要的军事意义。运用粗糙理论描述受到环境复杂性和人为主观经验的影响而不确定的决策要素,并充分利用DEA模型能快速评价多输入输出决策相对有效性的特点,建立基于粗糙DEA的通信干扰装备配置方案优选模型。最后通过实例计算,对配置方案的相对有效性进行了分析。  相似文献   

14.
目标分配是协同空战中的一项关键技术。针对已知威胁值和命中率的静态空战决策问题,从简化模型出发,结合目标函数和约束条件,建立空战决策模型,利用基本粒子群优化算法求解,并分别结合遗传算法、免疫算法和退火算法改进算法,改善了算法中种群的多样性,结果表明结合遗传算法改进粒子群算法速度更新算子的可行性最高,可以较好地解决空战决策问题。  相似文献   

15.
    
We study a multi‐stage dynamic assignment interdiction (DAI) game in which two agents, a user and an attacker, compete in the underlying bipartite assignment graph. The user wishes to assign a set of tasks at the minimum cost, and the attacker seeks to interdict a subset of arcs to maximize the user's objective. The user assigns exactly one task per stage, and the assignment costs and interdiction impacts vary across stages. Before any stage commences in the game, the attacker can interdict arcs subject to a cardinality constraint. An interdicted arc can still be used by the user, but at an increased assignment cost. The goal is to find an optimal sequence of assignments, coupled with the attacker's optimal interdiction strategy. We prove that this problem is strongly NP‐hard, even when the attacker can interdict only one arc. We propose an exact exponential‐state dynamic‐programming algorithm for this problem as well as lower and upper bounds on the optimal objective function value. Our bounds are based on classical interdiction and robust optimization models, and on variations of the DAI game. We examine the efficiency of our algorithms and the quality of our bounds on a set of randomly generated instances. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 373–387, 2017  相似文献   

16.
在应用GA求解大规模无人作战飞机(UCAV s)任务分配这个典型组合优化问题时,需要使用描述问题直观的序号编码方式,但由于传统的交叉、变异算子操作复杂,因而进化效率不高。针对上述的不足,提出了一种单亲遗传算法,采用序号编码,使用基因换位等遗传算子,简化了遗传操作。通过对单亲遗传算法、传统遗传算法求解该问题所得的结果作了详细的比较,证明了单亲遗传算法在寻优效率上的优越性。  相似文献   

17.
合理的干扰资源分配方法是干扰系统发挥效能的关键,传统的雷达干扰资源分配方法基于一对一或多对一原则,且分配时不考虑干扰样式。基于多波束干扰系统,考虑干扰样式的限制建立了干扰约束过滤模型,采用ISODATA算法实现了对目标雷达分群,将干扰样式纳入干扰资源进行了干扰参数设置。该分配方法,使得干扰决策更加合理,提升了系统的干扰效率和自适应能力。  相似文献   

18.
    
In this article, we address a stochastic generalized assignment machine scheduling problem in which the processing times of jobs are assumed to be random variables. We develop a branch‐and‐price (B&P) approach for solving this problem wherein the pricing problem is separable with respect to each machine, and has the structure of a multidimensional knapsack problem. In addition, we explore two other extensions of this method—one that utilizes a dual‐stabilization technique and another that incorporates an advanced‐start procedure to obtain an initial feasible solution. We compare the performance of these methods with that of the branch‐and‐cut (B&C) method within CPLEX. Our results show that all B&P‐based approaches perform better than the B&C method, with the best performance obtained for the B&P procedure that includes both the extensions aforementioned. We also utilize a Monte Carlo method within the B&P scheme, which affords the use of a small subset of scenarios at a time to estimate the “true” optimal objective function value. Our experimental investigation reveals that this approach readily yields solutions lying within 5% of optimality, while providing more than a 10‐fold savings in CPU times in comparison with the best of the other proposed B&P procedures. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 131–143, 2014  相似文献   

19.
    
We study a stochastic outpatient appointment scheduling problem (SOASP) in which we need to design a schedule and an adaptive rescheduling (i.e., resequencing or declining) policy for a set of patients. Each patient has a known type and associated probability distributions of random service duration and random arrival time. Finding a provably optimal solution to this problem requires solving a multistage stochastic mixed‐integer program (MSMIP) with a schedule optimization problem solved at each stage, determining the optimal rescheduling policy over the various random service durations and arrival times. In recognition that this MSMIP is intractable, we first consider a two‐stage model (TSM) that relaxes the nonanticipativity constraints of MSMIP and so yields a lower bound. Second, we derive a set of valid inequalities to strengthen and improve the solvability of the TSM formulation. Third, we obtain an upper bound for the MSMIP by solving the TSM under the feasible (and easily implementable) appointment order (AO) policy, which requires that patients are served in the order of their scheduled appointments, independent of their actual arrival times. Fourth, we propose a Monte Carlo approach to evaluate the relative gap between the MSMIP upper and lower bounds. Finally, in a series of numerical experiments, we show that these two bounds are very close in a wide range of SOASP instances, demonstrating the near‐optimality of the AO policy. We also identify parameter settings that result in a large gap in between these two bounds. Accordingly, we propose an alternative policy based on neighbor‐swapping. We demonstrate that this alternative policy leads to a much tighter upper bound and significantly shrinks the gap.  相似文献   

20.
提出一种基于semidefinite programming(简称SDP)松弛的干扰资源优化分配算法。在问题优化过程中首先对模型中非凸的约束条件进行松弛,变为凸约束,将原来的数学模型转化成SDP求解形式,利用内点算法对松弛后的模型求解。该算法利用解析的手段使得干扰资源优化分配问题中的NP难问题在多项式时间内得以解决,并且有较高的可靠性。仿真结果验证了算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号