首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigates the problem of determining the optimal location of plants, and their respective production and distribution levels, in order to meet demand at a finite number of centers. The possible locations of plants are restricted to a finite set of sites, and the demands are allowed to be random. The cost structure of operating a plant is dependent on its location and is assumed to be a piecewise linear function of the production level, though not necessarily concave or convex. The paper is organized in three parts. In the first part, a branch and bound procedure for the general piecewise linear cost problem is presented, assuming that the demand is known. In the second part, a solution procedure is presented for the case when the demand is random, assuming a linear cost of production. Finally, in the third part, a solution procedure is presented for the general problem utilizing the results of the earlier parts. Certain extensions, such as capacity expansion or reduction at existing plants, and geopolitical configuration constraints can be easily incorporated within this framework.  相似文献   

2.
We consider the problem of temporal expansion of the capacity of, say, a plant or road given estimates of its desired usage (demand). The basic problem is: given a sequence of predicted demands for N time periods, determine the optimal investment decision in each period to minimize a linear investment cost and a strictly convex cost of capacity. The relationship between capacity and the investment decisions is assumed to be linear, but time varying. Constraints on both the individual decisions and on the sum of the decisions are considered. An algorithm for solving this problem is derived.  相似文献   

3.
A collection of jobs is to be processed by a single machine. Each job has a cost function associated with it which may be either linear or exponential, costs accruing when a job is completed. The machine may be allocated to the jobs according to a precedence relation. The problem is to find a strategy for allocating the machine which minimizes the total cost and which is consistent with the precedence relation. The paper extends and simplifies some previous work done by Sidney.  相似文献   

4.
The gradual covering problem   总被引:1,自引:0,他引:1  
In this paper we investigate the gradual covering problem. Within a certain distance from the facility the demand point is fully covered, and beyond another specified distance the demand point is not covered. Between these two given distances the coverage is linear in the distance from the facility. This formulation can be converted to the Weber problem by imposing a special structure on its cost function. The cost is zero (negligible) up to a certain minimum distance, and it is a constant beyond a certain maximum distance. Between these two extreme distances the cost is linear in the distance. The problem is analyzed and a branch and bound procedure is proposed for its solution. Computational results are presented. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

5.
基于最大后验风险的多层Bayes方法   总被引:4,自引:2,他引:2  
为了对指数型产品进行可靠性鉴定,首先给出了失效率的多层先验分布,然后从最大后验风险的角度,运用Bayes方法,制定出可靠性鉴定试验方案.按照此鉴定试验方案,缩短了试验时间,从而降低了鉴定试验所需的费用.  相似文献   

6.
Logistical planning problems are complicated in practice because planners have to deal with the challenges of demand planning and supply replenishment, while taking into account the issues of (i) inventory perishability and storage charges, (ii) management of backlog and/or lost sales, and (iii) cost saving opportunities due to economies of scale in order replenishment and transportation. It is therefore not surprising that many logistical planning problems are computationally difficult, and finding a good solution to these problems necessitates the development of many ad hoc algorithmic procedures to address various features of the planning problems. In this article, we identify simple conditions and structural properties associated with these logistical planning problems in which the warehouse is managed as a cross‐docking facility. Despite the nonlinear cost structures in the problems, we show that a solution that is within ε‐optimality can be obtained by solving a related piece‐wise linear concave cost multi‐commodity network flow problem. An immediate consequence of this result is that certain classes of logistical planning problems can be approximated by a factor of (1 + ε) in polynomial time. This significantly improves upon the results found in literature for these classes of problems. We also show that the piece‐wise linear concave cost network flow problem can be approximated to within a logarithmic factor via a large scale linear programming relaxation. We use polymatroidal constraints to capture the piece‐wise concavity feature of the cost functions. This gives rise to a unified and generic LP‐based approach for a large class of complicated logistical planning problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

7.
Traditional methods of due-date assignment presented in the literature and used in practice generally assume cost-of-earliness and cost-of-tardiness functions that may bear little resemblance to true costs. For example, practitioners using ordinary least-squares (OLS) regression implicitly minimize a quadratic cost function symmetric about the due date, thereby assigning equal second-order costs to early completion and tardy behavior. In this article the consequences of such assumptions are pointed out, and a cost-based assignment scheme is suggested whereby the cost of early completion may differ in form and/or degree from the cost of tardiness. Two classical approaches (OLS regression and mathematical programming) as well as a neural-network methodology for solving this problem are developed and compared on three hypothetical shops using simulation techniques. It is found for the cases considered that: (a) implicitly ignoring cost-based assignments can be very costly; (b) simpler regression-based rules cited in the literature are very poor cost performers; (c) if the earliness and tardiness cost functions are both linear, linear programming and neural networks are the methodologies of choice; and (d) if the form of the earliness cost function differs from that of the tardiness cost function, neural networks are statistically superior performers. Finally, it is noted that neural networks can be used for a wide range of cost functions, whereas the other methodologies are significantly more restricted. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
The warehouse problem with deterministic production cost, selling prices, and demand was introduced in the 1950s and there is a renewed interest recently due to its applications in energy storage and arbitrage. In this paper, we consider two extensions of the warehouse problem and develop efficient computational algorithms for finding their optimal solutions. First, we consider a model where the firm can invest in capacity expansion projects for the warehouse while simultaneously making production and sales decisions in each period. We show that this problem can be solved with a computational complexity that is linear in the product of the length of the planning horizon and the number of capacity expansion projects. We then consider a problem in which the firm can invest to improve production cost efficiency while simultaneously making production and sales decisions in each period. The resulting optimization problem is non‐convex with integer decision variables. We show that, under some mild conditions on the cost data, the problem can be solved in linear computational time. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 367–373, 2016  相似文献   

9.
This article provides conditions under which total‐cost and average‐cost Markov decision processes (MDPs) can be reduced to discounted ones. Results are given for transient total‐cost MDPs with transition rates whose values may be greater than one, as well as for average‐cost MDPs with transition probabilities satisfying the condition that there is a state such that the expected time to reach it is uniformly bounded for all initial states and stationary policies. In particular, these reductions imply sufficient conditions for the validity of optimality equations and the existence of stationary optimal policies for MDPs with undiscounted total cost and average‐cost criteria. When the state and action sets are finite, these reductions lead to linear programming formulations and complexity estimates for MDPs under the aforementioned criteria.© 2017 Wiley Periodicals, Inc. Naval Research Logistics 66:38–56, 2019  相似文献   

10.
We consider the problem of simultaneously locating any number of facilities in three-dimensional Euclidean space. The criterion to be satisfied is that of minimizing the total cost of some activity between the facilities to be located and any number of fixed locations. Any amount of activity may be present between any pair of the facilities themselves. The total cost is assumed to be a linear function of the inter-facility and facility-to-fixed locations distances. Since the total cost function for this problem is convex, a unique optimal solution exists. Certain discontinuities are shown to exist in the derivatives of the total cost function which previously has prevented the successful use of gradient computing methods for locating optimal solutions. This article demonstrates the use of a created function which possesses all the necessary properties for ensuring the convergence of first order gradient techniques and is itself uniformly convergent to the actual objective function. Use of the fitted function and the dual problem in the case of constrained problems enables solutions to be determined within any predetermined degree of accuracy. Some computation results are given for both constrained and unconstrained problems.  相似文献   

11.
The segregated storage problem involves the optimal distribution of products among compartments with the restriction that only one product may be stored in each compartment. The storage capacity of each compartment, the storage demand for each product, and the linear cost of storing one unit of a product in a given compartment are specified. The problem is reformulated as a large set-packing problem, and a column generation scheme is devised to solve the associated linear programming problem. In case of fractional solutions, a branch and bound procedure is utilized. Computational results are presented.  相似文献   

12.
We consider a single item inventory system with positive and negative stock fluctuations. Items can be purchased from a central stock, n items can be returned for a cost R + rn, and a linear inventory carrying cost is charged. It is shown that for minimizing the asymptotic cost rate when returns are a significant fraction of stock usage, a two-critical-number policy (a,b) is optimal, where b is the trigger level for returns and b – a is the return quantity. The values for a and b are found, as well as the operating characteristics of the system. We also consider the optimal return decision to make at time zero and show that it is partially determined by a and b.  相似文献   

13.
分析了现代军用飞机采购价格估算中存在的问题.应用基于k-均值聚类算法的RBF神经网络建立了军用飞机采购价格预测模型,并采用该模型对某型军用飞机采购价格进行了预测.与多元线性回归和BP神经网络的预测结果对比,建立的新型军用飞机采购价格预测模型具有更高的预测精度,为军用飞机采购价格预测提供了一种新的有效方法.  相似文献   

14.
本文通过把一类分段线性费用网络流问题化成线性费用网络流问题,给出了求解这类分段线性费用网络流问题的算法。  相似文献   

15.
Each year, the U.S. Army procures billions of dollars worth of weapons and equipment. The process of deciding what to buy, when to buy, and in what quantities is extremely complex, requiring extensive analysis. Two techniques used in this analysis are mathematical programming and cost estimation. Although they are related through constraints on available procurement funds, the use of nonlinear cost learning curves, which better represent system costs as a function of quantity produced, have not been incorporated into the mathematical programming formulations that compute the quantities of items to be procured. As a result, the solutions obtained could be either suboptimal, or even infeasible with respect to budgetary limitations. In this paper we present a piecewise linear approximation of the learning curve costs for a more accurate portrayal of budgetary constraints used in a mixed integer linear programming for acquisition strategy optimization. In addition, implementation issues are discussed, and performance results are given. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 255–271, 1999  相似文献   

16.
本文讨论了分段线性凸费用网络流问题,推广了线性费用网络流中的负回路方法和最小费用路方法,从而得到了求分段线性凸费用网络的最小费用流的两个算法。  相似文献   

17.
The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.  相似文献   

18.
Clustering problems are often difficult to solve due to nonlinear cost functions and complicating constraints. Set partitioning formulations can help overcome these challenges, but at the cost of a very large number of variables. Therefore, techniques such as delayed column generation must be used to solve these large integer programs. The underlying pricing problem can suffer from the same challenges (non‐linear cost, complicating constraints) as the original problem, however, making a mathematical programming approach intractable. Motivated by a real‐world problem in printed circuit board (PCB) manufacturing, we develop a search‐based algorithm (Rank‐Cluster‐and‐Prune) as an alternative, present computational results for the PCB problem to demonstrate the tractability of our approach, and identify a broader class of clustering problems for which this approach can be used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

19.
We consider a single-machine scheduling model in which the job processing times are controllable variables with linear costs. The objective is to minimize the sum of the cost incurred in compressing job processing times and the cost associated with the number of late jobs. The problem is shown to be NP-hard even when the due dates of all jobs are identical. We present a dynamic programming solution algorithm and a fully polynomial approximation scheme for the problem. Several efficient heuristics are proposed for solving the problem. Computational experiments demonstrate that the heuristics are capable of producing near-optimal solutions quickly. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 67–82, 1998  相似文献   

20.
The exact expression is derived for the average stationary cost of a (Q,R) inventory system with lost sales, unit Poisson demands, Erlang-distributed lead times, fixed order cost, fixed cost per unit lost sale, linear holding cost per unit time, and a maximum of one order outstanding. Explicit expressions for the state probabilities and a fast method of calculating them are obtained for the case of Q greater than R. Exponential lead times are analyzed as a special case. A simple cyclic coordinate search procedure is used to locate the minimum cost policy. Examples of the effect of lead time variability on costs are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号