首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
基于量子遗传算法的钢管焊接结构焊缝损伤识别   总被引:1,自引:0,他引:1  
利用从发射台骨架试验模型获取的模态参数,选择识别结果中精度较好的模态频率作为模型修正的基准频率.通过对待修正参数的灵敏度分析,运用ANSYS和MATLAB软件对有限元模型进行了修正.以实测模态和计算模态之间的误差建立一个带约束边界的非线性最小二乘目标函数,将损伤识别问题转化为优化问题,引入量子遗传算法处理模态参数,进行结构的损伤识别.为了让量子遗传算法更适用于结构工程损伤识别领域,提出了改进的动态策略调整量子门旋转角.以有限元模型焊接结点单元组弹性模量的降低模拟焊缝损伤,并假定了损伤工况,对发射台骨架模型的数值仿真及试验研究表明:该损伤识别方法识别效果较为理想,为解决这种复杂焊接结构焊缝损伤识别问题提供了新的思路.  相似文献   

2.
针对大型结构局部损伤识别指标灵敏度不高的问题,提出了基于模态应变能曲率差的结构损伤识别方法。利用局部结构的振型和质量矩阵以及固有频率,求出单元模态应变能曲率差,并将该指标应用于损伤识别中。数值算例表明:该指标可以有效地定位损伤,并能定性描述损伤程度,且具有一定的抗噪性能。最后,将该方法应用于某发射台模型损伤识别的试验研究中,实测数据分析验证了该方法的有效性。  相似文献   

3.
对弯管结构进行损伤识别,采用模态柔度比结构的频率或位移模态更灵敏,且模态柔度仅需结构的低阶频率和振型就可准确地计算。采用有限元方法,以一弯管为仿真算例,以结构模型的单元刚度的下降来模拟损伤。结果表明:弯管结构的模态柔度具有方向性,弯管所在平面x、y方向柔度求解的模态柔度曲率差不能对弯管进行频率损伤识别,垂直弯管所在平面z方向柔度不仅可以对弯管进行单处、多处的损伤定位,而且可以对同一位置的损伤程度进行定量分析。  相似文献   

4.
为探索既有明确物理意义又有良好实用性的结构损伤识别方法,利用Wigner-Ville时频分布(WVD)对结构自由振动响应进行解析,建立了WVD时频幅值与结构模态参数的函数关系,提出利用测点WVD时频幅值曲率来识别损伤。该方法物理意义明确,初始激励易于实施,且不需要模态参数识别,提高了损伤识别精度。算例分析结果表明,所提出的方法能较好地识别出结构单个或多个损伤位置,且数据易于获得,处理简便。  相似文献   

5.
基于子结构思想,通过对框架结构中子结构的边界施加虚拟的数值支座,限制子结构边界的位移,把子结构从整体结构中隔离出来.运用提出的模态柔度曲率差方法对予结构进行了损伤识别.结果表明:该方法仅需低阶模态参数即可进行损伤识别,不论对单一位置损伤,还是多种共存的损伤,均具有损伤定位的能力,并能定性反映损伤程度.与已有的柔度差、柔...  相似文献   

6.
通过对38CrSi材料的电子束焊接性工艺技术探索及分析、试验,掌握了38Crsi材料在调质状态下采用真空电子束焊的焊接技术,对不同结构采用不同工艺参数的性能进行探索、试验比较,提出合理的结构形式和工艺参数,解决了原先焊缝“脆裂”现象,获得了满意的焊接质量。  相似文献   

7.
采用经过验证的有限元模态算法计算了金属桨和碳纤维桨模型的固有频率和位移、应变模态振型,在桨叶表面贴附电阻应变片并进行了应变模态测量试验。结果表明:铜桨和碳纤维桨的前三阶固有频率与计算值相差分别在3%和12%以内;碳纤维桨各阶固有频率均比铜桨要小,应变模态振型相似,结构阻尼前者是后者的4倍左右。  相似文献   

8.
为探索有效实用的结构损伤检测方法,运用分形理论直接对结构振动信号进行关联维数分析,通过度量系统输出的奇异性来识别结构的局部损伤,提出了基于振动响应关联维数的结构损伤检测方法.简支梁损伤算例结果表明,该方法能够准确地检测出梁式结构单个和多个不同程度的损伤位置,同时关联维数指标变化值会随着损伤程度的增加而增大.与曲率模态指...  相似文献   

9.
为较好解决复合材料结构损伤难以有效识别问题,提出一种基于集合经验模式分解(EEMD)和核函数极限学习机(K-ELM)的复合材料结构损伤识别新方法。通过对试验件进行冲击及长时间疲劳试验,得到光纤光栅传感器网络募集试验件的原始损伤信息。采用集合经验模式分解方法对原始损伤信息进行自适应分解,提取奇异熵特征信息。采用奇异熵特征信息分别构建基于K-ELM的损伤识别模型和基于BP的损伤识别模型,通过试验数据对两种损伤识别模型的有效性进行了验证和对比。结果表明,基于K-ELM的损伤识别模型具有更好的工程应用价值。  相似文献   

10.
以环境随机激励作用下的大型塔架结构为研究背景,提出了基于Polymax算法的大型复杂系统模态参数识别方法。首先针对大型塔架设计环境激励响应信号测试系统,然后对获取的激励响应信号进行分析和截取,选出各组试验中理想的响应信号段,最后基于Polymax算法对截取信号段进行参数识别,并将获取的结果进行模态验证。结果表明:该方法对于大型塔架模态参数的识别具有较高的精度。  相似文献   

11.
应用有限元分析方法,针对平板对接接头横向拉伸试验和实际工作状态下打底焊道为等强匹配、填充焊道为超强匹配时焊接接头在外载荷作用下的应力分布进行计算分析。分析结果表明:焊接接头内部强度的不均匀性引起材料变形能力的差异是接头应力分布不均匀性的主要原因,打底焊道应力低于其屈服强度,填充焊道是焊缝金属的主要承载部分;焊接热影响区对降低打底焊道和填充焊道强度不同引起的应力集中起重要作用;实际工况下的接头应力分布较试验接头应力分布更加均匀,承载能力高于试验状态的承载能力,在试验状态和实际工况下,接头的抗拉强度分别是母材抗拉强度的97.4%和99.4%。  相似文献   

12.
13.
14.
《防务技术》2015,11(3)
The ultrasonic contact impedance technique and ultrasonic wave velocities have been widely used for non-destructive hardness measurement.Ultrasonic wave velocity shift provides through the thickness average hardness, however, the correlations are performed according to surface hardness. In order to accept this technique as a particular non-destructive method for determination of hardness, it is necessary to test it with industrial applications. A widely used joining(welding) technique is selected for this purpose. Samples of carbon steels with three different carbon contents, but similar composition, are annealed in order to obtain the softened samples with different hardness values. Rockwell B scale hardness of heat treated samples, which are assumed to be isotropic, are determined and correlated with ultrasonic wave velocity shifts. Effect of welding process on hardness is investigated using ultrasonic wave velocity shifts, and the results are verified with destructive hardness measurements.  相似文献   

15.
《防务技术》2015,11(3)
The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy(OM) and field emission scanning electron microscopy(FESEM). Energy back scattered diffraction(EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr-Mn-N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.  相似文献   

16.
《防务技术》2015,11(3)
Magnetically impelled arc butt(MIAB) welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel(T11) tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone(TMAZ). To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost.The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.  相似文献   

17.
《防务技术》2015,11(3)
Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304 H parent metal and gas tungsten arc(GTA) welded joints were studied by constant load tests in 45% boiling Mg Cl2 solution. Stress corrosion cracking resistance of Super 304 H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.  相似文献   

18.
The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical,refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4 V and SS304 L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4 V and SS304 L into which pure oxygen free copper(OFC) was introduced as interlayer were investigated. Boxe Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4 V and SS304 L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.  相似文献   

19.
Tungsten inert gas (TIG) welding is the most commonly used joining process for aluminum alloy for AA6061 and AA7075 which are highly demanded in the aerospace engineering and the automobile sector, but there are some defects occur during TIG welding like micro-crack, coarse grain structure, and porosity. To improve these defects, the TIG welded joint is processed using friction stir processing (FSP). This paper presents the effect of friction stir processing on TIG welding with filler ER4043 and ER 5356 for dissimilar aluminum alloy AA6061 and AA7075. The mechanical characterization, finite element formulation and mathematical equations of heat transfer of TIG + FSP welded joints are investigated using ANSYS Fluent software by adjusting process parameters of FSP. The results show that the maximum compressive residual stress 73 MPa was obtained at the fusion zone (FZ) of the TIG weldment with filler ER4043, whereas minimum compressive residual stress 37 MPa was obtained at stir zone (SZ) of the TIG+FSP with filler 5356. The maximum heat flux 5.33 × 106 W/m2 and temperature 515 ℃ have observed at tool rotation 1600 rpm with a feed rate of 63 mm/min. These results give a satisfactory measure of confidence in the fidelity of the simulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号