首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In system reliability analysis, for an n ‐component system, the estimation of the performance of the components in the system is not straightforward in practice, especially when the components are dependent. Here, by assuming the n components in the system to be identically distributed with a common distribution belonging to a scale‐family and the dependence structure between the components being known, we discuss the estimation of the lifetime distributions of the components in the system based on the lifetimes of systems with the same structure. We develop a general framework for inference on the scale parameter of the component lifetime distribution. Specifically, the method of moments estimator (MME) and the maximum likelihood estimator (MLE) are derived for the scale parameter, and the conditions for the existence of the MLE are also discussed. The asymptotic confidence intervals for the scale parameter are also developed based on the MME and the MLE. General simulation procedures for the system lifetime under this model are described. Finally, some examples of two‐ and three‐component systems are presented to illustrate all the inferential procedures developed here. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

2.
In this article, we study reliability properties of m‐consecutive‐k‐out‐of‐n: F systems with exchangeable components. We deduce exact formulae and recurrence relations for the signature of the system. Closed form expressions for the survival function and the lifetime distribution as a mixture of the distribution of order statistics are established as well. These representations facilitate the computation of several reliability characteristics of the system for a given exchangeable joint distribution or survival function. Finally, we provide signature‐based stochastic ordering results for the system's lifetime and investigate the IFR preservation property under the formulation of m‐consecutive‐k‐out‐of‐n: F systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

3.
Suppose that failure times are available from a random sample of N systems of a given, fixed design with components which have i.i.d. lifetimes distributed according to a common distribution F. The inverse problem of estimating F from data on observed system lifetimes is considered. Using the known relationship between the system and component lifetime distributions via signature and domination theory, the nonparametric maximum likelihood estimator N(t) of the component survival function (t) is identified and shown to be accessible numerically in any application of interest. The asymptotic distribution of N(t) is also identified, facilitating the construction of approximate confidence intervals for (t) for N sufficiently large. Simulation results for samples of size N = 50 and N = 100 for a collection of five parametric lifetime models demonstrate the utility of the recommended estimator. Possible extensions beyond the i.i.d. framework are discussed in the concluding section. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

4.
Consider a system consisting of n separately maintained independent components where the components alternate between intervals in which they are “up” and in which they are “down”. When the ith component goes up [down] then, independent of the past, it remains up [down] for a random length of time, having distribution Fi[Gi], and then goes down [up]. We say that component i is failed at time t if it has been “down” at all time points s ?[t-A.t]: otherwise it is said to be working. Thus, a component is failed if it is down and has been down for the previous A time units. Assuming that all components initially start “up,” let T denote the first time they are all failed, at which point we say the system is failed. We obtain the moment-generating function of T when n = l, for general F and G, thus generalizing previous results which assumed that at least one of these distributions be exponential. In addition, we present a condition under which T is an NBU (new better than used) random variable. Finally we assume that all the up and down distributions Fi and Gi i = l,….n, are exponential, and we obtain an exact expression for E(T) for general n; in addition we obtain bounds for all higher moments of T by showing that T is NBU.  相似文献   

5.
In this paper, we consider a coherent system with n independent and identically distributed components under the condition that the system is monitored at time instances t1 and t2 (t1 < t2). First, various mixture representations for reliability function of the conditional residual lifetime of the coherent system are derived under different scenarios at times t1 and t2 (t1 < t2). Several stochastic comparisons between two systems are also made based on the proposed conditional random variables. Then, we consider the conditional residual lifetime of the functioning components of the system given that j components have failed at time t1 and the system has failed at time t2. Some stochastic comparisons on the proposed conditional residual lifetimes are investigated. Several illustrative graphs and examples are also provided.  相似文献   

6.
Following a review of the basic ideas in structural reliability, including signature‐based representation and preservation theorems for systems whose components have independent and identically distributed (i.i.d.) lifetimes, extensions that apply to the comparison of coherent systems of different sizes, and stochastic mixtures of them, are obtained. It is then shown that these results may be extended to vectors of exchangeable random lifetimes. In particular, for arbitrary systems of sizes m < n with exchangeable component lifetimes, it is shown that the distribution of an m‐component system's lifetime can be written as a mixture of the distributions of k‐out‐of‐n systems. When the system has n components, the vector of coefficients in this mixture representation is precisely the signature of the system defined in Samaniego, IEEE Trans Reliabil R–34 (1985) 69–72. These mixture representations are then used to obtain new stochastic ordering properties for coherent or mixed systems of different sizes. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

7.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

8.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   

9.
Suppose X is a random variable having an absolutely continuous distribution function F(x). We assume that F(x) has the Wald distribution. A relation between the probability density function of X−1 with that of X is used to characterize the Wald distribution.  相似文献   

10.
Measuring the relative importance of components in a mechanical system is useful for various purposes. In this article, we study Birnbaum and Barlow‐Proschan importance measures for two frequently studied system designs: linear consecutive k ‐out‐of‐ n and m ‐consecutive‐ k ‐out‐of‐ n systems. We obtain explicit expressions for the component importance measures for systems consisting of exchangeable components. We illustrate the results for a system whose components have a Lomax type lifetime distribution. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

11.
In this article, a model for a repairable consecutive‐k‐out‐of‐n: F system with Markov dependence is studied. A binary vector is used to represent the system state. The failure rate of a component in the system depends on the state of the preceding component. The failure risk of a system state is then introduced. On the basis of the failure risk, a priority repair rule is adopted. Then the transition density matrix can be determined, and the analysis of the system reliability can be conducted accordingly. One example each of a linear and a circular system is then studied in detail to explain the model and methodology developed in this paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 18–39, 2000  相似文献   

12.
An n-component parallel system is subjected to a known load program. As time passes, components fail in a random manner, which depends on their individual load histories. At any time, the surviving components share the total load according to some rule. The system's life distribution is studied under the linear breakdown rule and it is shown that if the load program is increasing, the system lifetime is IFR. Using the notion of Schur convexity, a stochastic comparison of different systems is obtained. It is also shown that the system failure time is asymptotically normally distributed as the number of components grows large. All these results hold under various load-sharing rules; in fact, we show that the system lifetime distribution is invariant under different load-sharing rules.  相似文献   

13.
For each n, X1(n),…, Xn(n) are independent and identically distributed random variables, each with cumulative distribution function F(x) which is known to be absolutely continuous but is otherwise unknown. The problem is to test the hypothesis that \documentclass{article}\pagestyle{empty}\begin{document}$ F(x) = G\left( {{\textstyle{{x - \theta _1 } \over {\theta _2 }}}} \right) $\end{document}, where the cumulative distribution function Gx is completely specified and satisfies certain regularity conditions, and the parameters θ1, θ2 are unknown and unspecified, except that the scale parameter θ2, is positive. Y1 (n) ≦ Y2 (n) ≦ … ≦ Yn (n)are the ordered values of X1(n),…, Xn(n). A test based on a certain subset of {Yi(n)} is proposed, is shown to have asymptotically a normal distribution when the hypothesis is true, and is shown to be consistent against all alternatives satisfying a mild regularity condition.  相似文献   

14.
This paper discusses situations in which the distribution of a lifetime response variable T is taken to depend upon a vector x of regressor variables. We specifically consider the case in which T, given x , has an exponential distribution, and in which x represents levels of fixed factors in an experimental design. Methods of analyzing data under this type of model are discussed, with maximum likelihood and least squares methods being presented and compared.  相似文献   

15.
We provide an expression for the Shannon entropy of mixed r‐out‐of‐ n systems when the lifetimes of the components are independent and identically distributed. The expression gives the system's entropy in terms of the system signature, the distribution and density functions of the lifetime model, and the information measures of the beta distribution. Bounds for the system's entropy are obtained by direct applications of the concavity of the entropy and the information inequality.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 202–206, 2014  相似文献   

16.
In this article, an integral equation satisfied by the second moment function M2(t) of a geometric process is obtained. The numerical method based on the trapezoidal integration rule proposed by Tang and Lam for the geometric function M(t) is adapted to solve this integral equation. To illustrate the numerical method, the first interarrival time is assumed to be one of four common lifetime distributions, namely, exponential, gamma, Weibull, and lognormal. In addition to this method, a power series expansion is derived using the integral equation for the second moment function M2(t), when the first interarrival time has an exponential distribution.  相似文献   

17.
If the probability of “failure” in a multivariate renewal process of the “success run” type is very small, then if certain conditions are imposed on the components of the renewals, the joint distribution of their total durations is approximately exponential with all mass along one line. This result is applied to a 2-i.i.d. unit repairable system of the “1 out of 2:G, Cold Standby” type.  相似文献   

18.
Accelerated life testing (ALT) is concerned with subjecting items to a series of stresses at several levels higher than those experienced under normal conditions so as to obtain the lifetime distribution of items under normal levels. A parametric approach to this problem requires two assumptions. First, the lifetime of an item is assumed to have the same distribution under all stress levels, that is, a change of stress level does not change the shape of the life distribution but changes only its scale. Second, a functional relationship is assumed between the parameters of the life distribution and the accelerating stresses. A nonparametric approach, on the other hand, assumes a functional relationship between the life distribution functions at the accelerated and nonaccelerated stress levels without making any assumptions on the forms of the distribution functions. In this paper, we treat the problem nonparametrically. In particular, we extend the methods of Shaked, Zimmer, and Ball [7] and Strelec and Viertl [8] and develop a nonparametric estimation procedure for a version of the generalized Arrhenius model with two stress variables assuming a linear acceleration function. We obtain consistent estimates as well as confidence intervals of the parameters of the life distribution under normal stress level and compare our nonparametric method with parametric methods assuming exponential, Weibull and lognormal life distributions using both real life and simulated data. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 629–644, 1998  相似文献   

19.
One branch of the reliability literature is concerned with devising statistical procedures with various nonparametric “restricted family” model assumptions because of the potential improved operating characteristics of such procedures over totally nonparametric ones. In the single-sample problem with unknown increasing failure rate (IFR) distribution F, (1) maximum-likelihood estimators of F have been calculated, (2) upper or lower tolerance limits for F have been determined, and (3) tests of the null hypothesis that F is exponential have been constructed. Barlow and Campo proposed graphical methods for assessing goodness of fit to the IFR model when the validity of this assumption is unknown. This article proposes several analytic tests of the IFR null hypothesis based on the maximum distance and area between the cumulative hazard function and its greatest convex minorant (GCM), and the maximum distance and area between the total time on test statistic and its GCM. A table of critical points is provided to implement a specific test having good overall power properties.  相似文献   

20.
A system reliability is often evaluated by individual tests of components that constitute the system. These component test plans have advantages over complete system based tests in terms of time and cost. In this paper, we consider the series system with n components, where the lifetime of the i‐th component follows exponential distribution with parameter λi. Assuming test costs for the components are different, we develop an efficient algorithm to design a two‐stage component test plan that satisfies the usual probability requirements on the system reliability and in addition minimizes the maximum expected cost. For the case of prior information in the form of upper bounds on λi's, we use the genetic algorithm to solve the associated optimization problems which are otherwise difficult to solve using mathematical programming techniques. The two‐stage component test plans are cost effective compared to single‐stage plans developed by Rajgopal and Mazumdar. We demonstrate through several numerical examples that our approach has the potential to reduce the overall testing costs significantly. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 95–116, 2002; DOI 10.1002/nav.1051  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号