首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

2.
We study a stochastic inventory model of a firm that periodically orders a product from a make‐to‐order manufacturer. Orders can be shipped by a combination of two freight modes that differ in lead‐times and costs, although orders are not allowed to cross. Placing an order as well as each use of each freight mode has a fixed and a quantity proportional cost. The decision of how to allocate units between the two freight modes utilizes information about demand during the completion of manufacturing. We derive the optimal freight mode allocation policy, and show that the optimal policy for placing orders is not an (s,S) policy in general. We provide tight bounds for the optimal policy that can be calculated by solving single period problems. Our analysis enables insights into the structure of the optimal policy specifying the conditions under which it simplifies to an (s,S) policy. We characterize the best (s,S) policy for our model, and through extensive numerical investigation show that its performance is comparable with the optimal policy in most cases. Our numerical study also sheds light on the benefits of the dual freight model over the single freight models. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

3.
We consider a finite horizon periodic review, single product inventory system with a fixed setup cost and two stochastic demand classes that differ in their backordering costs. In each period, one must decide whether and how much to order, and how much demand of the lower class should be satisfied. We show that the optimal ordering policy can be characterized as a state dependent (s,S) policy, and the rationing structure is partially obtained based on the subconvexity of the cost function. We then propose a simple heuristic rationing policy, which is easy to implement and close to optimal for intensive numerical examples. We further study the case when the first demand class is deterministic and must be satisfied immediately. We show the optimality of the state dependent (s,S) ordering policy, and obtain additional rationing structural properties. Based on these properties, the optimal ordering and rationing policy for any state can be generated by finding the optimal policy of only a finite set of states, and for each state in this set, the optimal policy is obtained simply by choosing a policy from at most two alternatives. An efficient algorithm is then proposed. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

4.
In this article the control of entry of customers to a queuing system with s servers is considered. It is assumed that the arrivals form a nonstationary Poisson process with a periodic rate. The service times are assumed to be exponentially distributed with a parameter independent of time. The cost structure considered is the same as that of Naor. It is demonstrated numerically that, like the stationary cases, the average expected benefit of customers per unit of time is a unimodal function of the critical point. And, also, the social critical point is smaller than the individual critical point. These suggest the use of a search technique for finding the social critical point. The results show successful application of the discrete version of the Fibonacci search.  相似文献   

5.
We explore the management of inventory for stochastic-demand systems, where the product's supply is randomly disrupted for periods of random duration, and demands that arrive when the inventory system is temporarily out of stock become a mix of backorders and lost sales. The stock is managed according to the following modified (s, S) policy: If the inventory level is at or below s and the supply is available, place an order to bring the inventory level up to S. Our analysis yields the optimal values of the policy parameters, and provides insight into the optimal inventory strategy when there are changes in the severity of supply disruptions or in the behavior of unfilled demands. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 687–703, 1998  相似文献   

6.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

7.
Computational formulas are given for the mean, variance, and autocorrelation function of the demand process at an upper-echelon facility (warehouse). The demand process at the warehouse is induced by the aggregated inventory replenishment processes of N independently operated lower-echelon facilities (stores) in parallel. Each store, we assume, employs an (s,S) inventory replenishment policy with complete backlogging to satisfy its own random, independently and identically distributed demand. The formulas result from an analysis of the stochastic replenishment process at a single store. Examples of the properties of the demand process at the upper-echelon facility are presented for several lower-echelon environments.  相似文献   

8.
This article studies the optimal capacity investment problem for a risk‐averse decision maker. The capacity can be either purchased or salvaged, whereas both involve a fixed cost and a proportional cost/revenue. We incorporate risk preference and use a consumption model to capture the decision maker's risk sensitivity in a multiperiod capacity investment model. We show that, in each period, capacity and consumption decisions can be separately determined. In addition, we characterize the structure of the optimal capacity strategy. When the parameters are stationary, we present certain conditions under which the optimal capacity strategy could be easily characterized by a static two‐sided (s, S) policy, whereby, the capacity is determined only at the beginning of period one, and held constant during the entire planning horizon. It is purchased up to B when the initial capacity is below b, salvaged down to Σ when it is above σ, and remains constant otherwise. Numerical tests are presented to investigate the impact of demand volatility on the optimal capacity strategy. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 218–235, 2016  相似文献   

9.
This article addresses a single‐item, finite‐horizon, periodic‐review coordinated decision model on pricing and inventory control with capacity constraints and fixed ordering cost. Demands in different periods are random and independent of each other, and their distributions depend on the price in the current period. Each period's stochastic demand function is the additive demand model. Pricing and ordering decisions are made at the beginning of each period, and all shortages are backlogged. The objective is to find an optimal policy that maximizes the total expected discounted profit. We show that the profit‐to‐go function is strongly CK‐concave, and the optimal policy has an (s,S,P) ‐like structure. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

10.
There are n customers that need to be served. Customer i will only wait in queue for an exponentially distributed time with rate λi before departing the system. The service time of customer i has distribution Fi, and on completion of service of customer i a positive reward ri is earned. There is a single server and the problem is to choose, after each service completion, which currently in queue customer to serve next so as to maximize the expected total return. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 659–663, 2015  相似文献   

11.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

12.
Consider a distribution system with a central warehouse and multiple retailers. Customer demand arrives at each of the retailers continuously at a constant rate. The retailers replenish their inventories from the warehouse which in turn orders from an outside supplier with unlimited stock. There are economies of scale in replenishing the inventories at both the warehouse and the retail level. Stockouts at the retailers are backlogged. The system incurs holding and backorder costs. The objective is to minimize the long‐run average total cost in the system. This paper studies the cost effectiveness of (R, Q) policies in the above system. Under an (R, Q) policy, each facility orders a fixed quantity Q from its supplier every time its inventory position reaches a reorder point R. It is shown that (R, Q) policies are at least 76% effective. Numerical examples are provided to further illustrate the cost effectiveness of (R, Q) policies. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 422–439, 2000  相似文献   

13.
We consider a make‐to‐order production system where two major components, one nonperishable (referred to as part 1) and one perishable (part 2), are needed to fulfill a customer order. In each period, replenishment decisions for both parts need to be made jointly before demand is realized and a fixed ordering cost is incurred for the nonperishable part. We show that a simple (sn,S,S) policy is optimal. Under this policy, S along with the number of backorders at the beginning of a period if any and the availability of the nonperishable part (part 1) determines the optimal order quantity of the perishable part (part 2), while (sn,S) guide when and how much of part 1 to order at each state. Numerical study demonstrates that the benefits of using the joint replenishment policy can be substantial, especially when the unit costs are high and/or the profit margin is low. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

14.
We discuss a time dependent optimal ordering policy for a finite horizon inventory system for which the provision of service is essential and thus no stockout is allowed. It is assumed that the system can place an order at any point in time during the horizon when it cannot meet the customer's demand and that lead time is negligible. The demand is considered to be distributed as a compound Poisson process with known parameters and the functional equation approach of dynamic programming is used to formulate the objective function. An algorithm has been developed to obtain the solution for all the cases. In addition, analytical solutions of the basic equation under two limiting conditions are presented.  相似文献   

15.
In this paper we study a machine repair problem in which a single unreliable server maintains N identical machines. The breakdown times of the machines are assumed to follow an exponential distribution. The server is subject to failure and the failure times are exponentially distributed. The repair times of the machine and the service times of the repairman are assumed to be of phase type. Using matrix‐analytic methods, we perform steady state analysis of this model. The time spent by a failed machine in service and the total time in the repair facility are shown to be of phase type. Several performance measures are evaluated. An optimization problem to determine the number of machines to be assigned to the server that will maximize the expected total profit per unit time is discussed. An illustrative numerical example is presented. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 462–480, 2003  相似文献   

16.
In this article we consider the optimal control of an M[X]/M/s queue, s ≧ 1. In addition to Poisson bulk arrivals we incorporate a reneging function. Subject to control are an admission price p and the service rate μ. Thus, through p, balking response is induced. When i customers are present a cost h(i,μ,p) per unit time is incurred, discounted continuously. Formulated as a continuous time Markov decision process, conditions are given under which the optimal admission price and optimal service rate are each nondecreasing functions of i. In Section 4 we indicate how the infinite state space may be truncated to a finite state space for computational purposes.  相似文献   

17.
A 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system consists of m × n components, and fails if and only if k or more components fail in an r × s submatrix. This system can be treated as a reliability model for TFT liquid crystal displays, wireless communication networks, etc. Although an effective method has been developed for evaluating the exact system reliability of small or medium‐sized systems, that method needs extremely high computing time and memory capacity when applied to larger systems. Therefore, developing upper and lower bounds and accurate approximations for system reliability is useful for large systems. In this paper, first, we propose new upper and lower bounds for the reliability of a 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system. Secondly, we propose two limit theorems for that system. With these theorems we can obtain accurate approximations for system reliabilities when the system is large and component reliabilities are close to one. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

18.
The objective of this paper is to determine the optimum inventory policy for a multi-product periodic review dynamic inventory system. At the beginning of each period two decisions are made for each product. How much to “normal order” with a lead time of λn periods and how much to “emergency order” with a lead time of λe periods, where λe = λn - 1. It is assumed that the emergency ordering costs are higher than the normal ordering costs. The demands for each product in successive periods are assumed to form a sequence of independent identically distributed random variables with known densities. Demands for individual products within a period are assumed to be non-negative, but they need not be independent. Whenever demand exceeds inventory their difference is backlogged rather than lost. The ordering decisions are based on certain costs and two revenue functions. Namely, the procurement costs which are assumed to be linear for both methods of ordering, convex holding and penalty costs, concave salvage gain functions, and linear credit functions. There is a restriction on the total amount that can be emergency ordered for all products. The optimal ordering policy is determined for the one and N-period models.  相似文献   

19.
In the finite-horizon stochastic (s, S) inventory model with periodic review the parameters of the optimal policy generally vary with the length of the horizon. A stationary policy, however, is easier to implement and may be easier to calculate. This paper studies optimal stationary policies for a finite horizon and relates them to optimal policies through their relation to optimal stationary policies for an infinite horizon.  相似文献   

20.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号