首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A new connection between the distribution of component failure times of a coherent system and (adaptive) progressively Type‐II censored order statistics is established. Utilizing this property, we develop inferential procedures when the data is given by all component failures until system failure in two scenarios: In the case of complete information, we assume that the failed component is also observed whereas in the case of incomplete information, we have only information about the failure times but not about the components which have failed. In the first setting, we show that inferential methods for adaptive progressively Type‐II censored data can directly be applied to the problem. For incomplete information, we face the problem that the corresponding censoring plan is not observed and that the available inferential procedures depend on the knowledge of the used censoring plan. To get estimates for distributional parameters, we propose maximum likelihood estimators which can be obtained by solving the likelihood equations directly or via an Expectation‐Maximization‐algorithm type procedure. For an exponential distribution, we discuss also a linear estimator to estimate the mean. Moreover, we establish exact distributions for some estimators in the exponential case which can be used, for example, to construct exact confidence intervals. The results are illustrated by a five component bridge system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 512–530, 2015  相似文献   

2.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

3.
This article presents new tools and methods for finding optimum step‐stress accelerated life test plans. First, we present an approach to calculate the large‐sample approximate variance of the maximum likelihood estimator of a quantile of the failure time distribution at use conditions from a step‐stress accelerated life test. The approach allows for multistep stress changes and censoring for general log‐location‐scale distributions based on a cumulative exposure model. As an application of this approach, the optimum variance is studied as a function of shape parameter for both Weibull and lognormal distributions. Graphical comparisons among test plans using step‐up, step‐down, and constant‐stress patterns are also presented. The results show that depending on the values of the model parameters and quantile of interest, each of the three test plans can be preferable in terms of optimum variance. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

4.
We formulate exact expressions for the expected values of selected estimators of the variance parameter (that is, the sum of covariances at all lags) of a steady‐state simulation output process. Given in terms of the autocovariance function of the process, these expressions are derived for variance estimators based on the simulation analysis methods of nonoverlapping batch means, overlapping batch means, and standardized time series. Comparing estimator performance in a first‐order autoregressive process and the M/M/1 queue‐waiting‐time process, we find that certain standardized time series estimators outperform their competitors as the sample size becomes large. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

5.
针对病态线性模型病态的实质,提出回归系数的0-c型岭估计。首先研究它的均方误差的最优化问题,给出了参数的最优值或最优值的一个上界和下界,证明可以选择参数,使它在均方误差的意义下优于LS估计。其次,研究它的偏差,证明存在0-c型岭估计优于LS估计,且比岭估计β(k)具有较小偏差。最后证明它的可容许性,并讨论在实用中它的岭参数选择方法的优点。  相似文献   

6.
We consider the problem of service rate control of a single‐server queueing system with a finite‐state Markov‐modulated Poisson arrival process. We show that the optimal service rate is nondecreasing in the number of customers in the system; higher congestion levels warrant higher service rates. On the contrary, however, we show that the optimal service rate is not necessarily monotone in the current arrival rate. If the modulating process satisfies a stochastic monotonicity property, the monotonicity is recovered. We examine several heuristics and show where heuristics are reasonable substitutes for the optimal control. None of the heuristics perform well in all the regimes and the fluctuation rate of the modulating process plays an important role in deciding the right heuristic. Second, we discuss when the Markov‐modulated Poisson process with service rate control can act as a heuristic itself to approximate the control of a system with a periodic nonhomogeneous Poisson arrival process. Not only is the current model of interest in the control of Internet or mobile networks with bursty traffic, but it is also useful in providing a tractable alternative for the control of service centers with nonstationary arrival rates. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 661–677, 2013  相似文献   

7.
Reliability Economics is a field that can be defined as the collection of all problems in which there is tension between the performance of systems of interest and their cost. Given such a problem, the aim is to resolve the tension through an optimization process that identifies the system which maximizes some appropriate criterion function (e.g. expected lifetime per unit cost). In this paper, we focus on coherent systems of n independent and identically distributed (iid) components and mixtures thereof, and characterize both a system's performance and cost as functions of the system's signature vector (Samaniego, IEEE Trans Reliabil (1985) 69–72). For a given family of criterion functions, a variety of optimality results are obtained for systems of arbitrary order n. Approximations are developed and justified when the underlying component distribution is unknown. Assuming the availability of an auxiliary sample of N component failure times, the asymptotic theory of L‐estimators is adapted for the purpose of establishing the consistency and asymptotic normality of the proposed estimators of the expected ordered failure times of the n components of the systems under study. These results lead to the identification of ε‐optimal systems relative to the chosen criterion function. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

8.
We consider two specially structured assemble‐to‐order (ATO) systems—the N‐ and W‐systems—under continuous review, stochastic demand, and nonidentical component replenishment leadtimes. Using a hybrid approach that combines sample‐path analysis, linear programming, and the tower property of conditional expectation, we characterize the optimal component replenishment policy and common‐component allocation rule, present comparative statics of the optimal policy parameters, and show that some commonly used heuristic policies can lead to significant optimality loss. The optimality results require certain symmetry in the cost parameters. In the absence of this symmetry, we show that, for systems with high demand volume, the asymptotically optimal policy has essentially the same structure; otherwise, the optimal policies have no clear structure. For these latter systems, we develop heuristic policies and show their effectiveness. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 62: 617–645, 2015  相似文献   

9.
We consider an integrated usage and maintenance optimization problem for a k‐out‐of‐n system pertaining to a moving asset. The k‐out‐of‐n systems are commonly utilized in practice to increase availability, where n denotes the total number of parallel and identical units and k the number of units required to be active for a functional system. Moving assets such as aircraft, ships, and submarines are subject to different operating modes. Operating modes can dictate not only the number of system units that are needed to be active, but also where the moving asset physically is, and under which environmental conditions it operates. We use the intrinsic age concept to model the degradation process. The intrinsic age is analogous to an intrinsic clock which ticks on a different pace in different operating modes. In our problem setting, the number of active units, degradation rates of active and standby units, maintenance costs, and type of economic dependencies are functions of operating modes. In each operating mode, the decision maker should decide on the set of units to activate (usage decision) and the set of units to maintain (maintenance decision). Since the degradation rate differs for active and standby units, the units to be maintained depend on the units that have been activated, and vice versa. In order to minimize maintenance costs, usage and maintenance decisions should be jointly optimized. We formulate this problem as a Markov decision process and provide some structural properties of the optimal policy. Moreover, we assess the performance of usage policies that are commonly implemented for maritime systems. We show that the cost increase resulting from these policies is up to 27% for realistic settings. Our numerical experiments demonstrate the cases in which joint usage and maintenance optimization is more valuable. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 418–434, 2017  相似文献   

10.
As a generalization of k‐out‐of‐n:F and consecutive k‐out‐of‐n:F systems, the consecutive k‐within‐m‐out‐of‐n:F system consists of n linearly ordered components such that the system fails iff there are m consecutive components which include among them at least k failed components. In this article, the reliability properties of consecutive k‐within‐m‐out‐of‐n:F systems with exchangeable components are studied. The bounds and approximations for the survival function are provided. A Monte Carlo estimator of system signature is obtained and used to approximate survival function. The results are illustrated and numerics are provided for an exchangeable multivariate Pareto distribution. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

11.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we study burn‐in procedure for a system that is maintained under periodic inspection and perfect repair policy. Assuming that the underlying lifetime distribution of a system has an initially decreasing and/or eventually increasing failure rate function, we derive upper and lower bounds for the optimal burn‐in time, which maximizes the system availability. Furthermore, adopting an age replacement policy, we derive upper and lower bounds for the optimal age parameter of the replacement policy for each fixed burn‐in time and a uniform upper bound for the optimal burn‐in time given the age replacement policy. These results can be used to reduce the numerical work for determining both optimal burn‐in time and optimal replacement policy. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

13.
We consider a parallel‐machine scheduling problem with jobs that require setups. The duration of a setup does not depend only on the job just completed but on a number of preceding jobs. These setup times are referred to as history‐dependent. Such a scheduling problem is often encountered in the food processing industry as well as in other process industries. In our model, we consider two types of setup times—a regular setup time and a major setup time that becomes necessary after several “hard‐to‐clean” jobs have been processed on the same machine. We consider multiple objectives, including facility utilization, flexibility, number of major setups, and tardiness. We solve several special cases assuming predetermined job sequences and propose strongly polynomial time algorithms to determine the optimal timing of the major setups for given job sequences. We also extend our analysis to develop pseudopolynomial time algorithms for cases with additional objectives, including the total weighted completion time, the total weighted tardiness, and the weighted number of tardy jobs. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

14.
In this paper we consider a simple three-order-statistic asymptotically unbiased estimator of the Weibull shape parameter c for the case in which all three parameters are unknown. Optimal quantiles that minimize the asymptotic variance of this estimator, c? are determined and shown to depend only on the true (unknown) shape parameter value c and in a rather insensitive way. Monte Carlo studies further verified that, in practice where the true shape parameter c is unknown, using always c? with the optimal quantities that correspond to c = 2.0 produces estimates, c?, remarkably close to the theoretical optimal. A second stage estimation procedure, namely recalculating c? based on the optimal quantiles corresponding to c?, was not worth the additional effort. Benchmark simulation comparisons were also made with the best percentile estimator of Zanakis [20] and with a new estimator of Wyckoff, Bain and Engelhardt [18], one that appears to be the best of proposed closed-form estimators but uses all sample observations. The proposed estimator, c?, should be of interest to practitioners having limited resources and to researchers as a starting point for more accurate iterative estimation procedures. Its form is independent of all three Weibull parameters and, for not too large sample sizes, it requires the first, last and only one other (early) ordered observation. Practical guidelines are provided for choosing the best anticipated estimator of shape for a three-parameter Weibull distribution under different circumstances.  相似文献   

15.
This paper discusses a novel application of mathematical programming techniques to a regression problem. While least squares regression techniques have been used for a long time, it is known that their robustness properties are not desirable. Specifically, the estimators are known to be too sensitive to data contamination. In this paper we examine regressions based on Least‐sum of Absolute Deviations (LAD) and show that the robustness of the estimator can be improved significantly through a judicious choice of weights. The problem of finding optimum weights is formulated as a nonlinear mixed integer program, which is too difficult to solve exactly in general. We demonstrate that our problem is equivalent to a mathematical program with a single functional constraint resembling the knapsack problem and then solve it for a special case. We then generalize this solution to general regression designs. Furthermore, we provide an efficient algorithm to solve the general nonlinear, mixed integer programming problem when the number of predictors is small. We show the efficacy of the weighted LAD estimator using numerical examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

16.
针对遵从放大转发协议的双向中继网络的联合信道估计问题,提出了一种基于Kalman滤波器的新方法。首先根据联合信道构成特点将其划分为自干扰部分及传输部分,通过AR模型对这两部分自相关函数进行近似化处理,建立了联合信道时变过程的状态方程,结合接收的训练序列信号,给出了具有Kalman滤波器形式的估计方法。随后在证明了该方法的一致收敛性质的同时,列出了误差性能限所满足的Riccati方程表达式。仿真结果表明,新估计方法相比于最大似然方法在均方误差方面具有明显的性能优势。  相似文献   

17.
We consider optimal test plans involving life distributions with failure‐free life, i.e., where there is an unknown threshold parameter below which no failure will occur. These distributions do not satisfy the regularity conditions and thus the usual approach of using the Fisher information matrix to obtain an optimal accelerated life testing (ALT) plan cannot be applied. In this paper, we assume that lifetime follows a two‐parameter exponential distribution and the stress‐life relationship is given by the inverse power law model. Near‐optimal test plans for constant‐stress ALT under both failure‐censoring and time‐censoring are obtained. We first obtain unbiased estimates for the parameters and give the approximate variance of these estimates for both failure‐censored and time‐censored data. Using these results, the variance for the approximate unbiased estimate of a percentile at a design stress is computed and then minimized to produce the near‐optimal plan. Finally, a numerical example is presented together with simulation results to study the accuracy of the approximate variance given by the proposed plan and show that it outperforms the equal‐allocation plan. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 169–186, 1999  相似文献   

18.
By running life tests at higher stress levels than normal operating conditions, accelerated life testing (ALT) quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant‐stress testing, a unit is tested at a fixed stress level until failure or the termination time point of test, whereas step‐stress testing allows the experimenter to gradually increase the stress levels at some prefixed time points during the test. In this work, the optimal k‐level constant‐stress and step‐stress ALTs are compared for the exponential failure data under complete sampling and Type‐I censoring. The objective is to quantify the advantage of using the step‐stress testing relative to the constant‐stress one. Assuming a log‐linear life–stress relationship with the cumulative exposure model for the effect of changing stress in step‐stress testing, the optimal design points are determined under C/D/A‐optimality criteria. The efficiency of step‐stress testing to constant‐stress one is then discussed in terms of the ratio of optimal objective functions based on the information matrix. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2013  相似文献   

19.
A 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system consists of m × n components, and fails if and only if k or more components fail in an r × s submatrix. This system can be treated as a reliability model for TFT liquid crystal displays, wireless communication networks, etc. Although an effective method has been developed for evaluating the exact system reliability of small or medium‐sized systems, that method needs extremely high computing time and memory capacity when applied to larger systems. Therefore, developing upper and lower bounds and accurate approximations for system reliability is useful for large systems. In this paper, first, we propose new upper and lower bounds for the reliability of a 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system. Secondly, we propose two limit theorems for that system. With these theorems we can obtain accurate approximations for system reliabilities when the system is large and component reliabilities are close to one. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

20.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号