首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
支持向量顺序回归机是标准支持向量分类机的一个推广,它是一个凸的二次规划问题。本文根据l1范数与l2范数等价关系和优化问题的对偶原理,把凸的二次规划转化成线性规划。由此提了支持向量顺序回归机的线性规划算法,进一步用数值实验验证了此算法的可行性和有效性。并与支持向量顺序回归机相比,它的运行时间缩短了,而且误差i不超过支持向量顺序回归机;  相似文献   

2.
For a linear fractional programming problem, Sharma and Swarup have constructed a dual problem, also a linear fractional program, in which the objective functions of both primal and dual problems are the same. Craven and Mond have extended this result to a nonlinear fractional programming problem with linear constraints, and a dual problem for which the objective function is the same as that of the primal. This theorem is now further extended from linear to differentiable convex constraints.  相似文献   

3.
The purpose of this article is to present an algorithm for globally maximizing the ratio of two convex functions f and g over a convex set X. To our knowledge, this is the first algorithm to be proposed for globally solving this problem. The algorithm uses a branch and bound search to guarantee that a global optimal solution is found. While it does not require the functions f and g to be differentiable, it does require that subgradients of g can be calculated efficiently. The main computational effort of the algorithm involves solving a sequence of subproblems that can be solved by convex programming methods. When X is polyhedral, these subproblems can be solved by linear programming procedures. Because of these properties, the algorithm offers a potentially attractive means for globally maximizing ratios of convex functions over convex sets. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

4.
We consider the component testing problem of a system where the main feature is that the component failure rates are not constant parameters, but they change in a dynamic fashion with respect to time. More precisely, each component has a piecewise-constant failure-rate function such that the lifetime distribution is exponential with a constant rate over local intervals of time within the overall mission time. There are several such intervals, and the rates change dynamically from one interval to another. We note that these lifetime distributions can also be used in a more general setting to approximate arbitrary lifetime distributions. The optimal component testing problem is formulated as a semi-infinite linear program. We present an algorithmic procedure to compute optimal test times based on the column-generation technique and illustrate it with a numerical example. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 187–197, 1997  相似文献   

5.
This paper examines a convex programming problem that arises in several contexts. In particular, the formulation was motivated by a generalization of the stochastic multilocation problem of inventory theory. The formulation also subsumes some “active” models of stochastic programming. A qualititative analysis of the problem is presented and it is shown that optimal policies have a certain geometric form. Properties of the optimal policy and of the optimal value function are described.  相似文献   

6.
In this paper we have applied the mathematical control theory to the accounting network flows, where the flow rates are constrained by linear inequalities. The optimal control policy is of the “generalized bang-bang” variety which is obtained by solving at each instant in time a linear programming problem whose objective function parameters are determined by the “switching function” which is derived from the Hamiltonian function. The interpretation of the adjoint variables of the control problem and the dual evaluators of the linear programming problem demonstrates an interesting interaction of the cross section phase of the problem, which is characterized by linear programming, and the dynamic phase of the problem, which is characterized by control theory.  相似文献   

7.
A general algorithm is developed for minimizing a well defined concave function over a convex polyhedron. The algorithm is basically a branch and bound technique which utilizes a special cutting plane procedure to' identify the global minimum extreme point of the convex polyhedron. The indicated cutting plane method is based on Glover's general theory for constructing legitimate cuts to identify certain points in a given convex polyhedron. It is shown that the crux of the algorithm is the development of a linear undrestimator for the constrained concave objective function. Applications of the algorithm to the fixed-charge problem, the separable concave programming problem, the quadratic problem, and the 0-1 mixed integer problem are discussed. Computer results for the fixed-charge problem are also presented.  相似文献   

8.
We present variants of a convergent Lagrangean relaxation algorithm for minimizing a strictly convex separable quadratic function over a transportation polytope. The algorithm alternately solves two “subproblems,” each of which has an objective function that is defined by using Lagrange multipliers derived from the other. Motivated by the natural separation of the subproblems into independent and very easily solved “subsubproblems,” the algorithm can be interpreted as the cyclic coordinate ascent method applied to the dual problem. We exhibit our computational results for different implementations of the algorithm applied to a set of large constrained matrix problems.  相似文献   

9.
The Weber Problem generalized to the location of several new points with respect to existing points is formulated as a linear programming problem under the assumption that distances are rectangular. The dual problem is then formulated and subsequently reduced to a problem with substantially fewer variables and constraints than required by an existent alternative linear programming formulation. Flows may exist between new as well as between new and existing points. Linear constraints can be imposed to restrict the location of new points. Pairwise constraints limiting distances between new points and between new and existing points can also be accommodated.  相似文献   

10.
We present a new algorithm for solving the problem of minimizing a nonseparable concave function over a polyhedron. The algorithm is of the branch-and-bound type. It finds a globally optimal extreme point solution for this problem in a finite number of steps. One of the major advantages of the algorithm is that the linear programming subproblems solved during the branch-and-bound search each have the same feasible region. We discuss this and other advantages and disadvantages of the algorithm. We also discuss some preliminary computational experience we have had with our computer code for implementing the algorithm. This computational experience involved solving several bilinear programming problems with the code.  相似文献   

11.
In this paper, we present a continuous time optimal control model for studying a dynamic pricing and inventory control problem for a make‐to‐stock manufacturing system. We consider a multiproduct capacitated, dynamic setting. We introduce a demand‐based model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate, and all coefficients are time‐dependent. A key part of the model is that no backorders are allowed. We introduce and study an algorithm that computes the optimal production and pricing policy as a function of the time on a finite time horizon, and discuss some insights. Our results illustrate the role of capacity and the effects of the dynamic nature of demand in the model. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
We show that the linear objective function of a search problem can be generalized to a power function and/or a logarithmic function and still be minimized by an index priority rule. We prove our result by solving the differential equation resulting from the required invariance condition, therefore, we also prove that any other generalization of this linear objective function will not lead to an index priority rule. We also demonstrate the full equivalence between two related search problems in the sense that a solution to either one can be used to solve the other one and vice versa. Finally, we show that the linear function is the only function leading to an index priority rule for the single‐machine makespan minimization problem with deteriorating jobs and an additive job deterioration function. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

13.
A descent algorithm simultaneously capable of solving linear programming, piecewise linear convex minimization, and the linear complementarity problem is developed. Conditions are given under which a solution can be found in a finite number of iterations using the geometry of the problem. A computer algorithm is developed and test problems are solved by both this method and Lemke's algorithm. Current results indicate a decrease in the number of cells visited but an increase in the total number of pivots needed to solve the problem.  相似文献   

14.
A modified generalized programming procedure is presented for solving concave programming problems with equality constraints. The procedure constructs convenient linear approximations of the gradient of the dual and finds points where the approximating functions vanish. In the quadratic programming case, the procedure is finitely convergent. Global convergence is established for the non-quadratic case. Illustrative numerical examples are included.  相似文献   

15.
In this paper we consider the problem of maximizing the sum of certain quasi-concave functions over a convex set. The functions considered belong to the classes of functions which are known as nonlinear fractional and binonlinear functions. Each individual function is quasi-concave but the sum is not. We show that this nonconvex programming problem can be solved using Generalized Benders Decomposition as developed by Geoffrion.  相似文献   

16.
We consider the problem of simultaneously locating any number of facilities in three-dimensional Euclidean space. The criterion to be satisfied is that of minimizing the total cost of some activity between the facilities to be located and any number of fixed locations. Any amount of activity may be present between any pair of the facilities themselves. The total cost is assumed to be a linear function of the inter-facility and facility-to-fixed locations distances. Since the total cost function for this problem is convex, a unique optimal solution exists. Certain discontinuities are shown to exist in the derivatives of the total cost function which previously has prevented the successful use of gradient computing methods for locating optimal solutions. This article demonstrates the use of a created function which possesses all the necessary properties for ensuring the convergence of first order gradient techniques and is itself uniformly convergent to the actual objective function. Use of the fitted function and the dual problem in the case of constrained problems enables solutions to be determined within any predetermined degree of accuracy. Some computation results are given for both constrained and unconstrained problems.  相似文献   

17.
We present a branch and bound algorithm to solve mathematical programming problems of the form: Find x =|(x1,…xn) to minimize Σ?i0(x1) subject to x?G, l≦x≦L and Σ?i0(x1)≦0, j=1,…,m. With l=(l1,…,ln) and L=(L1,…,Ln), each ?ij is assumed to be lower aemicontinuous and piecewise convex on the finite interval [li.Li]. G is assumed to be a closed convex set. The algorithm solves a finite sequence of convex programming problems; these correspond to successive partitions of the set C={x|l ≦ x ≦L} on the bahis of the piecewise convexity of the problem functions ?ij. Computational considerations are discussed, and an illustrative example is presented.  相似文献   

18.
Charnes and Cooper [1] showed that a linear programming problem with a linear fractional objective function could be solved by solving at most two ordinary linear programming problems. In addition, they showed that where it is known a priori that the denominator of the objective function has a unique sign in the feasible region, only one problem need be solved. In the present note it is shown that if a finite solution to the problem exists, only one linear programming problem must be solved. This is because the denominator cannot have two different signs in the feasible region, except in ways which are not of practical importance.  相似文献   

19.
We formulate the set partitioning problem as a matching problem with simple side constraints. As a result we obtain a Lagrangian relaxation of the set partitioning problem in which the primal problem is a matching problem. To solve the Lagrangian dual we must solve a sequence of matching problems each with different edge-weights. We use the cyclic coordinate method to iterate the multipliers, which implies that successive matching problems differ in only two edge-weights. This enables us to use sensitivity analysis to modify one optimal matching to obtain the next one. We give theoretical and empirical comparisons of these dual bounds with the conventional linear programming ones.  相似文献   

20.
The construction of convex and concave envelopes of real‐valued functions has been of interest in mathematical programming for over 3 decades. Much of this interest stems from the fact that convex and concave envelopes can play important roles in algorithms for solving various discrete and continuous global optimization problems. In this article, we use a simplicial subdivision tool to present and validate the formula for the concave envelope of a monomial function over a rectangle. Potential algorithmic applications of this formula are briefly indicated. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号