首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用GS算法研究了圆柱共形微带阵列天线的自适应零点形成.根据腔模理论和逐元法得到圆柱共形微带阵列天线的方向性函数,将GS算法运用于共形阵列进行自适应零点形成.仿真结果表明,采用GS算法的圆柱共形微带天线阵列能准确地在干扰方向形成零陷.  相似文献   

2.
利用旋转馈电方法设计双频带圆极化的微带贴片阵列天线。该阵列包括四个金属微带贴片单元与一个金属微带矩形环。每个贴片单元为侧边单点馈电的切角矩形,且关于中心旋转对称。矩形环被放置在阵列中心,与四个贴片单元通过四条微带线相连。该中心矩形环既充当了馈电网络,为阵列提供了产生圆极化波所需的递增相位,又参与了辐射,提高了阵列天线的辐射性能。由于采用了矩形环馈电贴片单元的方式,该阵列只需单层介质板,具有结构紧凑的优点,而且在两个频段内实现了圆极化辐射。经加工、制作并进行测试,该阵列的-10 d B阻抗带宽分别为5.17 GHz~5.59 GHz和5.99 GHz~6.27 GHz,3 d B轴比带宽分别为5.19 GHz~5.49 GHz和6.1 GHz~6.18 GHz。  相似文献   

3.
本文报导8×8元并馈微带阵列天线的研制结果,给出了理论上微带阵列的增益和方向图,并将其与实测相比,二者基本一致。  相似文献   

4.
针对远场窄带相干信源的二维DOA估计问题,提出了一种基于垂直阵列的解相干算法,利用垂直阵列模型特性,在3个线性子阵列进行分维处理运算。在每一个维度,运用空域平滑算法构建数据协方差矩阵实现解相干,并结合ESPRIT算法分别估计信源与各线阵的夹角,利用其中一个角度来组合其他两个角度,实现参数配对。仿真实验结果显示,相较于空域平滑DOA矩阵法,算法的稳定性、估计精度都较高,适用于低信噪比和短快拍情况。  相似文献   

5.
设计了一个工作于X波段的单层微带反射阵列天线,阵列单元采用双方环与方形金属贴片组合结构,通过调整内侧方环的长度可以实现超过360°的移相范围。选择角锥喇叭天线作为微带反射阵列的馈源。为了获得宽带特性,阵元间距选择约1/4中心频率波长。利用高频电磁仿真软件Ansoft HFSS对所设计的反射阵列进行建模仿真,结果表明:反射阵列在中心频点处的增益为20. 5 dB,1 dB增益相对带宽达到20. 9%。在此基础上调整阵元尺寸,使得反射阵列主波束分别指向φ=0°,θ=30°和φ=0°,θ=-45°方向。所设计的反射阵列具有频带宽、增益高、可设定主波束指向的优点。  相似文献   

6.
为了减缩微带阵列天线的带内雷达散射截面,设计了一种EBG结构的吸波超材料,从导纳圆图分析了其吸波机理。其厚度为0.3 mm,吸波率达到99.9%,将其加载于微带阵列天线贴片周围。仿真结果表明:阵列天线各个阵元的回波损耗和天线增益基本保持不变,在5.44~5.85GHz间法向RCS减缩达到3 d B,最大减缩达到16.1 d B。单站RCS在-40°~+40°角域、双站RCS在-90°~+90°角域得到了减缩,证实了该吸波结构有良好的吸波效果,可以用于微带阵列天线带内隐身。  相似文献   

7.
针对共形阵列方位依赖幅相误差校正问题,给出了一种新的基于辅助阵元的自校正算法。对共形阵列接收快拍数据延时,构造满足旋转不变关系的时域子对,并计算子对的协方差矩阵和四阶累积量矩阵;基于旋转不变子空间原理完成对阵列流型和信源频率的估计;利用精确校正的辅助阵元和解线性方程组,实现对信源方位和方位依赖幅相误差的估计。所给算法适用于任意共形载体,普适性强,且无需参数搜索和配对,计算量小。Monte-Carlo仿真实验证明了所给算法的有效性。  相似文献   

8.
结合等效分析方法的有关结论和相关经验公式,提出了一种适用于测高矩形微带贴片天线的通用尺寸设计方法,并且使用其对一种工作于P波段的测高矩形贴片天线进行了实际设计,之后利用Ansoft HFSS对其进行了参数优化与仿真分析,获得了良好的效果,验证了这种快速设计方法的有效性,说明其具备一定的工程借鉴价值.  相似文献   

9.
考虑到现有单阵元被动合成阵列算法对阵元的运动模型假设过于理想且对相位噪声的适应能力不足,首先,提出一种适用于阵元任意机动方式的单阵元被动合成阵列通用算法,进而通过相位噪声模型分析,给出最大相参时间及有效合成阵元数的选取方法,重建了合成阵列的流形矢量,得到了与相位噪声模型相匹配的改进算法.然后,在相位噪声影响条件下,推导了单阵元被动合成阵列波达方向的理论估计方差下限.仿真分析表明,较未考虑相位噪声影响的算法,改进算法能够有效提高相位噪声影响下的单阵元被动合成阵列测向精度.  相似文献   

10.
介绍了一种以斜角微带-缝隙过渡馈电的Ka波段渐变缝隙天线.这种馈电方式在阵列应用中有很大的优势,因为天线阵和馈线可一次印刷制造,并且也易于和其后的电路集成.使用这种馈电方式和一组PIN开关实现了一组线阵共用同一接收机通道的效果,对于毫米波阵列成像系统研究具有重要的意义.  相似文献   

11.
以微分几何为工具,分析和研究了小型阵列的阵列流形的微分几何参数与信号到达方向估计精度之间的关系,并在此基础上推导分析了小型阵列在各个方向上的测向性能与阵列几何布局之间的关系,最后给出小型阵列布局的设计思路。并以五元阵为例,对几种不同的几何布局进行仿真对比和分析,验证了设计思路的正确性。  相似文献   

12.
针对观测过程中角度发生变化时的运动目标跟踪问题,同时考虑到常规阵列中所普遍存在的互耦效应,通过分析均匀线阵互耦矩阵的带状Toeplitz结构,提出利用在原始阵列两侧增加辅助阵元的方法补偿互耦效应对阵列响应函数的影响,并将粒子滤波技术与原始阵列经互耦补偿后的观测数据相结合,实现了阵列互耦条件下对角度变化目标的高精度方向跟踪。仿真实验验证了新方法的优良性能。  相似文献   

13.
针对阵列模型误差难以建模的问题,提出一种新的非参数化有源校正方法。首先,测量部分离散方向点上的导向矢量。然后,利用测得的导向矢量拟合所有的模型误差曲面,并得到多项式系数。最后,在DOA估计时利用多项式系数计算所有方向和频率上的导向矢量。该方法适用于宽带阵列,且需要的数据存储量小。仿真实验结果表明该方法的校正误差非常小。因此,该方法具有一定的工程实用价值。  相似文献   

14.
在均匀线性阵列和双平行线阵模型下,结合常规波束形成算法,一维子空间类算法和二维子空间类算法的原理,构建了阵元间互耦和通道幅相不一致的误差模型,系统性地分析了两种阵列误差对这些经典算法的作用机理,并进行了数值仿真验证。理论分析和仿真结果表明,互耦和通道不一致会对阵列流型产生扰动,并破坏旋转不变关系,使得经典算法估计性能严重下降,降低了估计成功概率。  相似文献   

15.
射频仿真目标阵列系统计算机控制方法的研究   总被引:1,自引:0,他引:1  
本文简要介绍了射频仿真目标阵列系统计算机控制方案,其中包括结构组成、接口通信控制过程以及彩色图形显示功能。同时,根据实际目标阵列的结构特点,提出了目标阵列系统实时控制的快速算法;分析了此算法的优越性;并且给出了目标阵列系统控制软件的设计方法。目前,目标阵列系统的控制软件已在实际系统中使用,实践表明,效果良好。  相似文献   

16.
利用双端口双极化微带天线阵元设计了一种中心频率在9.5 GHz的四元Van Atta平面阵,双端口双极化微带天线阵元采用双层介质口径耦合馈电技术。利用高频电磁仿真软件HFSS对阵元及阵列模型进行仿真分析,结果表明:以来波方向-35°,-5°,15°为例,所设计的Van Atta阵双站RCS在-35°,-6°,13°方向达到最大,阵列反向性良好;单站RCS值在-40°~40°来波角度范围内变化小于3 d B,且在前向半空间均大于均匀阵的RCS值,并克服了均匀阵的零陷限制。  相似文献   

17.
目标方位估计(DOA)的众多算法中,ESPRIT是一种运算速度快、精度高的常用算法,但它不能解相干信号.提出一种基于虚拟阵列平移方法的解相干信号的ESPRIT算法,解决了常规ESPRIT算法不能解相干的问题,和解相干的空间平滑算法相比,不损失直线阵列的孔径,使M元直线阵可估计相干信号源数目达到M个.该方法适用于所有信号(非相干和相干信号)的目标方位估计.  相似文献   

18.
测向阵列选择的前提是阵列无模糊,快速实用的判决算法具有重要的理论与实用价值。由于方程组法不适合判断复杂阵列模糊以及谱峰搜索法计算量大的不足,因此,提出了一种利用导向矢量夹角余弦绝对值判断阵列模糊的算法。此算法能够快捷地判断阵列是否模糊并求解模糊角。仿真实验证明此方法的有效性。  相似文献   

19.
本文介绍了在射频目标仿真系统中采用校准机和校准高频头进行目标位置精度调试的计算机控制方法。本方法适用于射频仿真实验室的系统调试。  相似文献   

20.
就方位多相位中心(Azimuth Multiple-Phase-Center,AMPC)合成孔径雷达(Synthetic Aperture Radar,SAR)系统的阵列误差对信号重建性能的影响进行分析。将阵列误差建模为随机过程,结合最小二乘(Least-Square,LS)算法,推导了AMPC SAR误差功率谱的解析表达式,进而得到了AMPC SAR的信噪比与方位模糊比的解析表达式。仿真实验验证了理论分析的正确性。分析指出,随着系统脉冲重复频率的升高,有必要通过减小重建系数以实现重建性能的提升。分析方法与结果对AMPC SAR系统设计以及图像质量预估提供有效支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号