首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This article had its genesis in a background study for the development of a new Australian Army counter-insurgency doctrine. Archival research showed that the Australian counter-insurgency doctrine employed in such post-1945 conflicts as Burma, Malaya, Borneo and Vietnam originated in the jungle campaigns of the South West Pacific Area during World War II. The historical record also showed that the Army's counter-insurgency doctrine, as with its World War II-jungle warfare doctrine, was a pragmatic amalgam of Australian experience and British doctrine. The article traces this process through the development of a series of doctrine manuals. It also considers the contribution of key individuals to both counter-insurgency theory and practice. This distinctively Australian approach to the development of doctrine was responsible for producing a highly successful manual, The Division in Battle: Pamphlet No. 11, Counter-Revolutionary Warfare (DIB 11), which the Army used during its involvement in Vietnam.  相似文献   

2.
Abstract

This paper examines the nexus between the Japanese strategy and economic–industrial mobilization during the period 1937–1945. From 1937 to December 1941, the country was engaged in a land war of attrition in China. This war requested an immense amount of resources and was associated with armaments procurement strategy with emphasis in the army. However, the Japanese strategic vision assumed that the state was strong enough to engage in one land war against China and in a naval war in the Pacific simultaneously. The basis of Japanese strategy was a utopia. Making things worse, the naval war in the Pacific was conducted against the most industrialized powers in the world [the US and the British Empire (Britain, Australia, India, etc.)]. Finally, the internal Japanese industrial mobilization was associated with immense errors in armaments production (absence of economies of scale and scope, limited raw materials, etc.). Under these circumstances, the defeat was an expected outcome.  相似文献   

3.
This paper discusses the operations analysis in the underwater search for the remains of the submarine Scorpion The a priori target location probability distribution for the search was obtained by monte-carlo procedures based upon nine different scenarios concerning the Scorpion loss and associated credibility weights. These scenarios and weights were postulated by others. Scorpion was found within 260 yards of the search grid cell having the largest a priori probability Frequent computations of local effectiveness probabilities (LEPs) were carried out on scene during the search and were used to determine an updated (a posteriori) target location distribution. This distribution formed the basis for recommendation of the current high probability areas for search The sum of LEPs weighted by the a priori target location probabilities is called search effectiveness probability (SEP) and was used as the overall measure of effectiveness for the operation. SEP and LEPs were used previously in the Mediterranean H-bomb search On-scene and stateside operations analysis are discussed and the progress of the search is indicated by values of SEP for various periods during the operation.  相似文献   

4.
The discounted return associated with a finite state Markov chain X1, X2… is given by g(X1)+ αg(X2) + α2g(X3) + …, where g(x) represents the immediate return from state x. Knowing the transition matrix of the chain, it is desired to compute the expected discounted return (present worth) given the initial state. This type of problem arises in inventory theory, dynamic programming, and elsewhere. Usually the solution is approximated by solving the system of linear equations characterizing the expected return. These equations can be solved by a variety of well-known methods. This paper describes yet another method, which is a slight modification of the classical iterative scheme. The method gives sequences of upper and lower bounds which converge mono-tonely to the solution. Hence, the method is relatively free of error control problems. Computational experiments were conducted which suggest that for problems with a large number of states, the method is quite efficient. The amount of computation required to obtain the solution increases much slower with an increase in the number of states, N, than with the conventional methods. In fact, computational time is more nearly proportional to N2, than to N3.  相似文献   

5.
For a given set S of nonnegative integers the partitioning problem asks for a partition of S into two disjoint subsets S1 and S2 such that the sum of elements in S1 is equal to the sum of elements in S2. If additionally two elements (the kernels) r1, r2S are given which must not be assigned to the same set Si, we get the partitioning problem with kernels. For these NP‐complete problems the authors present two compound algorithms which consist both of three linear greedylike algorithms running independently. It is shown that the worst‐case performance of the heuristic for the ordinary partitioning problem is 12/11, while the second procedure for partitioning with kernels has a bound of 8/7. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 593–601, 2000  相似文献   

6.
Tolerance limits which control both tails of the normal distribution so that there is no more than a proportion β1 in one tail and no more than β2 in the other tail with probability γ may be computed for any size sample. They are computed from X? - k1S and X? - k2S, where X? and S are the usual sample mean and standard deviation and k1 and k2 are constants previously tabulated in Odeh and Owen [3]. The question addressed is, “Just how accurate are the coverages of these intervals (– Infin;, X?k1S) and (X? + k2S, ∞) for various size samples?” The question is answered in terms of how widely the coverage of each tail interval differs from the corresponding required content with a given confidence γ′.  相似文献   

7.
When twentieth-century authors wrote about ‘partisan warfare’, they usually meant an insurgency or asymmetric military operations conducted against a superior force by small bands of ideologically driven irregular fighters. By contrast, originally (i.e. before the French Revolution) ‘partisan’ in French, English, and German referred only to the leader of a detachment of special forces (party, partie, Parthey, détachement) which the major European powers used to conduct special operations alongside their regular forces. Such special operations were the classic definition of ‘small war’ (petite guerre) in the late seventeenth and in the eighteenth centuries. The Spanish word ‘la guerrilla’, meaning nothing other than ‘small war’, only acquired an association with rebellion with the Spanish War of Independence against Napoleon. Even after this, however, armies throughout the world have continued to employ special forces. In the late nineteenth century, their operations have still been referred to as prosecuting ‘la guerrilla’ or ‘small war’, which existed side by side with, and was often mixed with, ‘people's war’ or popular uprisings against hated regimes.  相似文献   

8.
Suppose one object is hidden in the k-th of n boxes with probability p(k). The boxes are to be searched sequentially. Associated with the j-th search of box k is a cost c(j,k) and a conditional probability q(j,k) that the first j - 1 searches of box k are unsuccessful while the j-th search is successful given that the object is hidden in box k. The problem is to maximize the probability that we find the object if we are not allowed to offer more than L for the search. We prove the existence of an optimal allocation of the search effort L and state an algorithm for the construction of an optimal allocation. Finally, we discuss some problems concerning the complexity of our problem.  相似文献   

9.
A single server is faced with a collection of jobs of varying duration and urgency. Each job has a random lifetime during which it is available for nonpreemptive service. Should a job's lifetime expire before its service begins then it is lost from the system unserved. The goal is to schedule the jobs for service to maximize the expected number served to completion. Two heuristics have been proposed in the literature. One (labeled πS) operates a static priority among the job classes and works well in a “no premature job loss” limit, whereas the second (πM) is a myopic heuristic which works well when lifetimes are short. Both can exhibit poor performance for problems at some distance from the regimes for which they were designed. We develop a robustly good heuristic by an approximative approach to the application of a policy improvement step to the asymptotically optimal heuristic πS, in which we use a fluid model to obtain an approximation for the value function of πS. The performance of the proposed heuristic is investigated in an extensive numerical study. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

10.
This paper is concerned with estimating p = P(X1 < Y …, Xn < Y) or q =P (X < Y1, …, X < Yn) where the X's and Y's are all independent random variables. Applications to estimation of the reliability p from stress-strength relationships are considered where a component is subject to several stresses X1, X2, …, XN whereas its strength, Y, is a single random variable. Similarly, the reliability q is of interest where a component is made of several parts all with their individual strengths Y1, Y2 …, YN and a single stress X is applied to the component. When the X's and Y's are independent and normal, maximum likelihood estimates of p and q have been obtained. For the case N = 2 and in some special cases, minimum variance unbiased estimates have been given. When the Y's are all exponential and the X is normal with known variance, but unknown mean (or uniform between 0 and θ, θ being unknown) the minimum variance unbiased estimate of q is established in this paper.  相似文献   

11.
The effectiveness of Johnson's Approximate Method (JAM) for the 3 × n job shop scheduling problems was examined on 1,500 test cases with n ranging from 6 to 50 and with the processing times Ai, Bi, Ci (for item i on machines A, B, C) being uniformly and normally distributed. JAM proved to be quite effective for the case Bi ? max (Ai, Ci) and optimal for Bi, ? min (Ai, Ci).  相似文献   

12.
Suppose X1,X2, ?,Xn is a random sample of size n from a continuous distribution function F(x) and let X1,n, ≦ X2,n ≦ ? ≦ Xn,n be the corresponding order statistics. We define the jth-order gap gi,j as gi,j = Xi+j,n ? Xi,n, 1 ≦ i < n, 1 ≦ jn ? i. In this article characterizations of the exponential distribution are given by considering the distributional properties of gk,n-k, 1 ≦ kn.  相似文献   

13.
The present study is concerned with the determination of a few observations from a sufficiently large complete or censored sample from the extreme value distribution with location and scale parameters μ and σ, respectively, such that the asymptotically best linear unbiased estimators (ABLUE) of the parameters in Ref. [24] yield high efficiencies among other choices of the same number of observations. (All efficiencies considered are relative to the Cramér-Rao lower bounds for regular unbiased estimators.) The study is on the asymptotic theory and under Type II censoring scheme. For the estimation of μ when σ is known, it has been proved that there exists a unique optimum spacing whether the sample is complete, right censored, left censored, or doubly censored. Several tables are prepared to aid in the numerical computation of the estimates as well as to furnish their efficiencies. For the estimation of σ when μ is known, it has been observed that there does not exist a unique optimum spacing. Accordingly we have obtained a spacing based on a complete sample which yields high efficiency. A similar table as above is prepared. When both μ and σ are unknown, we have considered four different spacings based on a complete sample and chosen the one yielding highest efficiency. A table of the efficiencies is also prepared. Finally we apply the above results for the estimation of the scale and/or shape parameters of the Weibull distribution.  相似文献   

14.
Atomic Obsession: Nuclear Alarmism from Hiroshima to Al Qaeda, by John Mueller. Oxford University Press, 2009. 336 pages, $27.95.

Les armes nucléaires: Mythes et réalités [Nuclear Weapons: Myths and Realities], by Georges Le Guelte. Actes Sud, 2009. 390 pages, [euro]25.  相似文献   

15.
The signature of a system with independent and identically distributed (i.i.d.) component lifetimes is a vector whose ith element is the probability that the ith component failure is fatal to the system. System signatures have been found to be quite useful tools in the study and comparison of engineered systems. In this article, the theory of system signatures is extended to versions of signatures applicable in dynamic reliability settings. It is shown that, when a working used system is inspected at time t and it is noted that precisely k failures have occurred, the vector s [0,1]nk whose jth element is the probability that the (k + j)th component failure is fatal to the system, for j = 1,2,2026;,nk, is a distribution‐free measure of the design of the residual system. Next, known representation and preservation theorems for system signatures are generalized to dynamic versions. Two additional applications of dynamic signatures are studied in detail. The well‐known “new better than used” (NBU) property of aging systems is extended to a uniform (UNBU) version, which compares systems when new and when used, conditional on the known number of failures. Sufficient conditions are given for a system to have the UNBU property. The application of dynamic signatures to the engineering practice of “burn‐in” is also treated. Specifically, we consider the comparison of new systems with working used systems burned‐in to a given ordered component failure time. In a reliability economics framework, we illustrate how one might compare a new system to one successfully burned‐in to the kth component failure, and we identify circumstances in which burn‐in is inferior (or is superior) to the fielding of a new system. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

16.
An alternating renewal process starts at time zero and visits states 1,2,…,r, 1,2, …,r 1,2, …,r, … in sucession. The time spent in state i during any cycle has cumulative distribution function Fi, and the sojourn times in each state are mutually independent, positive and nondegenerate random variables. In the fixed time interval [0,T], let Ui(T) denote the total amount of time spent in state i. In this note, a central limit theorem is proved for the random vector (Ui(T), 1 ≤ ir) (properly normed and centered) as T → ∞.  相似文献   

17.
Suppose X is a random variable having an absolutely continuous distribution function F(x). We assume that F(x) has the Wald distribution. A relation between the probability density function of X−1 with that of X is used to characterize the Wald distribution.  相似文献   

18.
Consider a stochastic simulation experiment consisting of v independent vector replications consisting of an observation from each of k independent systems. Typical system comparisons are based on mean (long‐run) performance. However, the probability that a system will actually be the best is sometimes more relevant, and can provide a very different perspective than the systems' means. Empirically, we select one system as the best performer (i.e., it wins) on each replication. Each system has an unknown constant probability of winning on any replication and the numbers of wins for the individual systems follow a multinomial distribution. Procedures exist for selecting the system with the largest probability of being the best. This paper addresses the companion problem of estimating the probability that each system will be the best. The maximum likelihood estimators (MLEs) of the multinomial cell probabilities for a set of v vector replications across k systems are well known. We use these same v vector replications to form vk unique vectors (termed pseudo‐replications) that contain one observation from each system and develop estimators based on AVC (All Vector Comparisons). In other words, we compare every observation from each system with every combination of observations from the remaining systems and note the best performer in each pseudo‐replication. AVC provides lower variance estimators of the probability that each system will be the best than the MLEs. We also derive confidence intervals for the AVC point estimators, present a portion of an extensive empirical evaluation and provide a realistic example. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 341–358, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10019  相似文献   

19.
Under a free-replacement warranty of duration W, the customer is provided, for an initial cost of C, as many replacement items as needed to provide service for a period W. Payments of C are not made at fixed intervals of length W, but in random cycles of length Y = W + γ(W), where γ(W) is the (random) remaining life-time of the item in service W time units after the beginning of a cycle. The expected number of payments over the life cycle, L, of the item is given by MY(L), the renewal function for the random variable Y. We investigate this renewal function analytically and numerically and compare the latter with known asymptotic results. The distribution of Y, and hence the renewal function, depends on the underlying failure distribution of the items. Several choices for this distribution, including the exponential, uniform, gamma and Weibull, are considered.  相似文献   

20.
Consider a system consisting of n separately maintained independent components where the components alternate between intervals in which they are “up” and in which they are “down”. When the ith component goes up [down] then, independent of the past, it remains up [down] for a random length of time, having distribution Fi[Gi], and then goes down [up]. We say that component i is failed at time t if it has been “down” at all time points s ?[t-A.t]: otherwise it is said to be working. Thus, a component is failed if it is down and has been down for the previous A time units. Assuming that all components initially start “up,” let T denote the first time they are all failed, at which point we say the system is failed. We obtain the moment-generating function of T when n = l, for general F and G, thus generalizing previous results which assumed that at least one of these distributions be exponential. In addition, we present a condition under which T is an NBU (new better than used) random variable. Finally we assume that all the up and down distributions Fi and Gi i = l,….n, are exponential, and we obtain an exact expression for E(T) for general n; in addition we obtain bounds for all higher moments of T by showing that T is NBU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号