首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers multi‐item inventory systems where a customer order may require several different items (i.e., demands are correlated across items) and customer satisfaction is measured by the time delays seen by the customers. Most inventory models on time delay in the literature assume each demand only requires one item (i.e., demands are not correlated across items or are independent). In this paper, we derive an exact expression for the expected total time delay. We show that when items are actually correlated, assuming items are independent leads to an overestimate of the total time delay. However, (1) it is extremely difficult in practice to obtain the demand information for all demand types (especially in a system with tens of thousands of part numbers), and (2) the problem becomes too complicated to be of practical interest when the correlation is considered. We then explore the possibility of including the demand information partially and develop bounds for the time delays. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 671–688, 1999  相似文献   

2.
We revisit the capacity investment decision problem studied in the article “Resource Flexibility with Responsive Pricing” by Chod and Rudi [Operations Research 53, (2005) 532–548]. A monopolist firm producing two dependent (substitutable or complementary) products needs to determine the capacity of one flexible resource under demand risk so as to maximize its expected profit. Product demands are linear functions of the prices of both products, and the market potentials are random and correlated. We perform a comparative statics analysis on how demand variability and correlation impact the optimal capacity and the resulting expected profit. In particular, C&R study this problem under the following assumptions/approximations: (i) demand intercepts follow a bivariate Normal distribution; (ii) demand uncertainty is of an additive form; (iii) and under approximate expressions for the optimal capacity and optimal expected profit. We revisit Propositions 2, 3, 4, 5, and 10 of C&R without these assumptions and approximations, and show that these results continue to hold (i) for the exact expressions for the optimal expected profit and optimal capacity, and (ii) under any arbitrary continuous distribution of demand intercepts. However, we also show that the additive demand uncertainty is a critical assumption for the C&R results to hold. In particular, we provide a case of multiplicative uncertainty under which the C&R results (Propositions 2 and 3) fail. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

3.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

4.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

5.
We consider a setting in which inventory plays both promotional and service roles; that is, higher inventories not only improve service levels but also stimulate demand by serving as a promotional tool (e.g., as the result of advertising effect by the enhanced product visibility). Specifically, we study the periodic‐review inventory systems in which the demand in each period is uncertain but increases with the inventory level. We investigate the multiperiod model with normal and expediting orders in each period, that is, any shortage will be met through emergency replenishment. Such a model takes the lost sales model as a special case. For the cases without and with fixed order costs, the optimal inventory replenishment policy is shown to be of the base‐stock type and of the (s,S) type, respectively. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

6.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

7.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

8.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   

9.
This article analyses a divergent supply chain consisting of a central warehouse and N nonidentical retailers. The focus is on joint evaluation of inventory replenishment and shipment consolidation effects. A time‐based dispatching and shipment consolidation policy is used at the warehouse in conjunction with real‐time point‐of‐sale data and centralized inventory information. This represents a common situation, for example, in various types of vendor managed inventory systems. The main contribution is the derivation of an exact recursive procedure for determining the expected inventory holding and backorder costs for the system, under the assumption of Poisson demand. Two heuristics for determining near optimal shipment intervals are also presented. The results are applicable both for single‐item and multiitem systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 59–71, 2011  相似文献   

10.
For computing an optimal (Q, R) or kindred inventory policy, the current literature provides mixed signals on whether or when it is safe to approximate a nonnormal lead‐time‐demand (“LTD”) distribution by a normal distribution. The first part of this paper examines this literature critically to justify why the issue warrants further investigations, while the second part presents reliable evidence showing that the system‐cost penalty for using the normal approximation can be quite serious even when the LTD‐distribution's coefficient of variation is quite low—contrary to the prevalent view of the literature. We also identify situations that will most likely lead to large system‐cost penalty. Our results indicate that, given today's technology, it is worthwhile to estimate an LTD‐distribution's shape more accurately and to compute optimal inventory policies using statistical distributions that more accurately reflect the LTD‐distributions' actual shapes. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

11.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

12.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   

13.
Computational formulas are given for the mean, variance, and autocorrelation function of the demand process at an upper-echelon facility (warehouse). The demand process at the warehouse is induced by the aggregated inventory replenishment processes of N independently operated lower-echelon facilities (stores) in parallel. Each store, we assume, employs an (s,S) inventory replenishment policy with complete backlogging to satisfy its own random, independently and identically distributed demand. The formulas result from an analysis of the stochastic replenishment process at a single store. Examples of the properties of the demand process at the upper-echelon facility are presented for several lower-echelon environments.  相似文献   

14.
We study a selling practice that we refer to as locational tying (LT), which seems to be gaining wide popularity among retailers. Under this strategy, a retailer “locationally ties” two complementary items that we denote by “primary” and “secondary.” The retailer sells the primary item in an appropriate “department” of his or her store. To stimulate demand, the secondary item is offered in the primary item's department, where it is displayed in very close proximity to the primary item. We consider two variations of LT: In the multilocation tying strategy (LT‐M), the secondary item is offered in its appropriate department in addition to the primary item's department, whereas in the single‐location tying strategy (LT‐S), it is offered only in the primary item's location. We compare these LT strategies to the traditional independent components (IC) strategy, in which the two items are sold independently (each in its own department), but the pricing/inventory decisions can be centralized (IC‐C) or decentralized (IC‐D). Assuming ample inventory, we compare and provide a ranking of the optimal prices of the four strategies. The main insight from this comparison is that relative to IC‐D, LT decreases the price of the primary item and adjusts the price of the secondary item up or down depending on its popularity in the primary item's department. We also perform a comparative statics analysis on the effect of demand and cost parameters on the optimal prices of various strategies, and identify the conditions that favor one strategy over others in terms of profitability. Then we study inventory decisions in LT under exogenous pricing by developing a model that accounts for the effect of the primary item's stock‐outs on the secondary item's demand. We find that, relative to IC‐D, LT increases the inventory level of the primary item. We also link the profitability of different strategies to the trade‐off between the increase in demand volume of the secondary item as a result of LT and the potential increase in inventory costs due to decentralizing the inventory of the secondary item. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

15.
This article presents several single-echelon, single-item, static demand inventory models for situations in which, during the stockout period, a fraction b of the demand is backordered and the remaining fraction 1 - b is lost forever. Both deterministic and stochastic demand are considered. although the case of stochastic demand is treated heuristically. In each situation, a mathematical model representing the average annual cost of operating the inventory system is developed. and an optimum operating policy derived. At the extremes b=1 and b=0 the models presented reduce to the usual backorders and lost sales cases, respectively.  相似文献   

16.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

17.
We develop a competitive pricing model which combines the complexity of time‐varying demand and cost functions and that of scale economies arising from dynamic lot sizing costs. Each firm can replenish inventory in each of the T periods into which the planning horizon is partitioned. Fixed as well as variable procurement costs are incurred for each procurement order, along with inventory carrying costs. Each firm adopts, at the beginning of the planning horizon, a (single) price to be employed throughout the horizon. On the basis of each period's system of demand equations, these prices determine a time series of demands for each firm, which needs to service them with an optimal corresponding dynamic lot sizing plan. We establish the existence of a price equilibrium and associated optimal dynamic lotsizing plans, under mild conditions. We also design efficient procedures to compute the equilibrium prices and dynamic lotsizing plans.© 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

18.
The operating characteristics of (s,S) inventory systems are often difficult to compute, making systems design and sensitivity analysis tedious and expensive undertakings. This article presents a methodology for simplified sensitivity analysis, and derives approximate expressions for operating characteristics of a simple (s,S) inventory system. The operating characteristics under consideration are the expected values of total cost per period, holding cost per period, replenishment cost per period, backlog cost per period, and backlog frequency. The approximations are obtained by using least-squares regression to fit simple functions to the operating characteristics of a large number of inventory items with diverse parameter settings. Accuracy to within a few percent of actual values is typical for most approximations. Potential uses of the approximations are illustrated for several idealized design problems, including consolidating demand from several locations, and tradeoffs for increasing service or reducing replenishment delivery lead time.  相似文献   

19.
Consider a repeated newsvendor problem for managing the inventory of perishable products. When the parameter of the demand distribution is unknown, it has been shown that the traditional separated estimation and optimization (SEO) approach could lead to suboptimality. To address this issue, an integrated approach called operational statistics (OS) was developed by Chu et al., Oper Res Lett 36 (2008) 110–116. In this note, we first study the properties of this approach and compare its performance with that of the traditional SEO approach. It is shown that OS is consistent and superior to SEO. The benefit of using OS is larger when the demand variability is higher. We then generalize OS to the risk‐averse case under the conditional value‐at‐risk (CVaR) criterion. To model risk from both demand sampling and future demand uncertainty, we introduce a new criterion, called the total CVaR, and find the optimal OS under this new criterion. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 206–214, 2015  相似文献   

20.
The system under study is a single item, two‐echelon production‐inventory system consisting of a capacitated production facility, a central warehouse, and M regional distribution centers that satisfy stochastic demand. Our objective is to determine a system base‐stock level which minimizes the long run average system cost per period. Central to the approach are (1) an inventory allocation model and associated convex cost function designed to allocate a given amount of system inventory across locations, and (2) a characterization of the amount of available system inventory using the inventory shortfall random variable. An exact model must consider the possibility that inventories may be imbalanced in a given period. By assuming inventory imbalances cannot occur, we develop an approximation model from which we obtain a lower bound on the per period expected cost. Through an extensive simulation study, we analyze the quality of our approximation, which on average performed within 0.50% of the lower bound. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 377–398, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号