排序方式: 共有3条查询结果,搜索用时 5 毫秒
1
1.
Gabor变换和K-means算法是最为常用的纹理分析方法。然而,采用Gabor变换得到的纹理特征向量具有较高的维数,影响算法的运行效率;K-means算法也易受初始类中心的影响而导致分类精度下降。因此,通过Relief算法对采用Gabor变换所提取的纹理特征进行选择,得到合适的纹理特征子集。进一步采用差分进化算法,对K-means算法的聚类中心进行优化从而提高纹理识别精度和效率。实验结果表明:提出的方法所需用到的纹理特征向量的维数相对于原始特征集有大幅降低,较之基本的K-means算法,纹理识别的精度也有较明显的提高。 相似文献
2.
针对高分辨率遥感影像提出了一种面向像斑的自优化迭代分类算法,基于半监督聚类算法获取训练样本,以支持向量机为核心设计了自优化迭代分类器。使用分型网络演化算法获取像斑,并从中选取少量标记样本;结合标记样本,利用半监督模糊C均值算法对像斑进行聚类,并基于密集度筛选得到训练样本;设计了自优化迭代支持向量机分类算法,对所有像斑进行迭代分类直到满足分类要求,并在分类过程中对近邻分类结果进行统计得到高可信度样本以自主优化训练样本集。基于以上方法分别对武汉市QuickBird和WorldView影像进行分类实验,分类总精度分别达到94.67%与92%,与基于人工选取训练样本情况下进行分类的分类总精度(82%与82.67%)、常规支持向量机分类总精度(87.33%与88%)、最小二乘支持向量机分类总精度(88%与89.33%)相比,精度有明显提升,分类效果较好。 相似文献
3.
针对高分辨率遥感影像提出了一种面向像斑的自优化迭代分类算法,基于半监督聚类算法获取训练样本,以支持向量机为核心设计了自优化迭代分类器。使用分型网络演化算法获取像斑,并从中选取少量标记样本;结合标记样本,利用半监督模糊C均值算法对像斑进行聚类,并基于密集度筛选得到训练样本;设计了自优化迭代支持向量机分类算法,对所有像斑进行迭代分类直到满足分类要求,并在分类过程中对近邻分类结果进行统计得到高可信度样本以自主优化训练样本集。基于以上方法分别对武汉市Quick Bird和World View影像进行分类实验,分类总精度分别达到94.67%与92%,与基于人工选取训练样本情况下进行分类的分类总精度(82%与82.67%)、常规支持向量机分类总精度(87.33%与88%)、最小二乘支持向量机分类总精度(88%与89.33%)相比,精度有明显提升,分类效果较好。 相似文献
1