首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   10篇
  2021年   6篇
  2019年   17篇
  2018年   10篇
  2017年   16篇
  2016年   12篇
  2015年   10篇
  2013年   90篇
  2011年   6篇
  2010年   8篇
  2009年   5篇
  2008年   3篇
  2007年   7篇
  2006年   9篇
  2005年   12篇
  2004年   11篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   10篇
  1999年   6篇
  1998年   7篇
  1997年   9篇
  1996年   12篇
  1995年   4篇
  1994年   10篇
  1993年   9篇
  1992年   8篇
  1991年   16篇
  1990年   8篇
  1989年   4篇
  1986年   9篇
  1985年   13篇
  1984年   10篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   12篇
  1979年   7篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   8篇
  1974年   13篇
  1973年   10篇
  1972年   9篇
  1971年   16篇
  1970年   3篇
  1969年   6篇
  1968年   5篇
  1967年   3篇
排序方式: 共有529条查询结果,搜索用时 885 毫秒
61.
This article is concerned with the optimal location of any number (n) of facilities in relation to any number (m) of destinations on the Euclidean plane. The criterion to be satisfied is the minimization of total weighted distances where the distances are rectangular. The destinations may be either single points, lines or rectangular areas. A gradient reduction solution procedure is described which has the property that the direction of descent is determined by the geometrical properties of the problem.  相似文献   
62.
63.
64.
Allocation of scarce common components to finished product orders is central to the performance of assembly systems. Analysis of these systems is complex, however, when the product master schedule is subject to uncertainty. In this paper, we analyze the cost—service performance of a component inventory system with correlated finished product demands, where component allocation is based on a fair shares method. Such issuing policies are used commonly in practice. We quantify the impact of component stocking policies on finished product delays due to component shortages and on product order completion rates. These results are used to determine optimal base stock levels for components, subject to constraints on finished product service (order completion rates). Our methodology can help managers of assembly systems to (1) understand the impact of their inventory management decisions on customer service, (2) achieve cost reductions by optimizing their inventory investments, and (3) evaluate supplier performance and negotiate contracts by quantifying the effect of delivery lead times on costs and customer service. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:409–429, 2001  相似文献   
65.
This paper develops and applies a nonparametric bootstrap methodology for setting inventory reorder points and a simple inequality for identifying existing reorder points that are unreasonably high. We demonstrate that an empirically based bootstrap method is both feasible and calculable for large inventories by applying it to the 1st Marine Expeditionary Force General Account, an inventory consisting of $20–30 million of stock for 10–20,000 different types of items. Further, we show that the bootstrap methodology works significantly better than the existing methodology based on mean days of supply. In fact, we demonstrate performance equivalent to the existing system with a reduced inventory at one‐half to one‐third the cost; conversely, we demonstrate significant improvement in fill rates and other inventory performance measures for an inventory of the same cost. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 459–478, 2000  相似文献   
66.
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is N P‐hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst‐case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two‐machine flow shop and the open shop problems with a single server are also shown to be N P‐hard in the strong sense. However, we reduce the two‐machine flow shop no‐wait problem with a single server to the Gilmore—Gomory traveling salesman problem and solve it in polynomial time. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 304–328, 2000  相似文献   
67.
We present an air-defense engagement model to counter an attack by multiple antiship missiles, assuming perfect kill assessment. In this model, the probability of shooting down all incoming missiles is maximized. A generating function is employed to produce an algorithm which is used to evaluate the outcomes. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 687–697, 1997  相似文献   
68.
We examine two key stochastic processes of interest for warranty modeling: (1) remaining total warranty coverage time exposure and (2) warranty load (total items under warranty at time t). Integral equations suitable for numerical computation are developed to yield probability law for these warranty measures. These two warranty measures permit warranty managers to better understand time‐dependent warranty behavior, and thus better manage warranty cash reserves. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
69.
Capacity planning decisions affect a significant portion of future revenue. In the semiconductor industry, they need to be made in the presence of both highly volatile demand and long capacity installation lead‐times. In contrast to traditional discrete‐time models, we present a continuous‐time stochastic programming model for multiple resource types and product families. We show how this approach can solve capacity planning problems of reasonable size and complexity with provable efficiency. This is achieved by an application of the divide‐and‐conquer algorithm, convexity, submodularity, and the open‐pit mining problem. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号