首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3429篇
  免费   76篇
  国内免费   1篇
  2021年   38篇
  2019年   92篇
  2018年   57篇
  2017年   81篇
  2016年   82篇
  2015年   69篇
  2014年   73篇
  2013年   762篇
  2012年   46篇
  2011年   56篇
  2010年   57篇
  2009年   50篇
  2008年   71篇
  2007年   60篇
  2006年   46篇
  2005年   47篇
  2004年   56篇
  2003年   45篇
  2002年   59篇
  2001年   35篇
  1999年   42篇
  1998年   47篇
  1997年   51篇
  1996年   63篇
  1995年   43篇
  1994年   62篇
  1993年   64篇
  1992年   59篇
  1991年   74篇
  1989年   31篇
  1986年   70篇
  1985年   64篇
  1984年   37篇
  1983年   42篇
  1982年   43篇
  1981年   45篇
  1980年   51篇
  1979年   47篇
  1978年   49篇
  1977年   45篇
  1976年   46篇
  1975年   47篇
  1974年   52篇
  1973年   50篇
  1972年   52篇
  1971年   43篇
  1970年   41篇
  1969年   40篇
  1968年   34篇
  1967年   33篇
排序方式: 共有3506条查询结果,搜索用时 198 毫秒
951.
952.
953.
Results of Geoffrion for efficient and properly efficient solutions of multiobjective programming problems are extended to multiobjective fractional programming problems. Duality relationships are given for these problems where the functions are generalized convex or invex.  相似文献   
954.
本文根据附面层理论,对高速气流中的液滴,因气流和液滴表面相互作用而产生的气动剥离现象进行了分析,建立了气液两相附面层耦合问题的理论分析模型,得到了发生气动剥离时的最小气流速度的计算公式,为液体燃料在高速气流申雾化机理研究提供参考。  相似文献   
955.
956.
957.
958.
In this paper we present a componentwise delay measure for estimating and improving the expected delays experienced by customers in a multi‐component inventory/assembly system. We show that this measure is easily computed. Further, in an environment where the performance of each of the item delays could be improved with investment, we present a solution that aims to minimize this measure and, in effect, minimizes the average waiting time experienced by customers. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   
959.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
960.
Order picking accounts for most of the operating expense of a typical distribution center, and thus is often considered the most critical function of a supply chain. In discrete order picking a single worker walks to pick all the items necessary to fulfill a single customer order. Discrete order picking is common not only because of its simplicity and reliability, but also because of its ability to pick orders quickly upon receipt, and thus is commonly used by e‐commerce operations. There are two primary ways to reduce the cost (walking distance required) of the order picking system. First is through the use of technology—conveyor systems and/or the ability to transmit order information to pickers via mobile units. Second is through the design—where best to locate depots (where workers receive pick lists and deposit completed orders) and how best to lay out the product. We build a stochastic model to compare three configurations of different technology requirements: single‐depot, dual‐depot, and no‐depot. For each configuration we explore the optimal design. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号