首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   4篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2013年   33篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  1999年   3篇
  1998年   2篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   6篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   6篇
  1972年   1篇
  1971年   6篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   4篇
  1966年   5篇
  1949年   1篇
排序方式: 共有149条查询结果,搜索用时 212 毫秒
101.
It is often assumed in the facility location literature that functions of the type øi(xi, y) = βi[(xi-x)2+(yi-y)2]K/2 are twice differentiable. Here we point out that this is true only for certain values of K. Convexity proofs that are independent of the value of K are given.  相似文献   
102.
103.
104.
A general multiperiod multi-echelon supply system consisting of n facilities each stocking a single product is studied. At the beginning of a period each facility may order stock from an exogenous source with no delivery lag and proportional ordering costs. During the period the (random) demands at the facilities are satisfied according to a given supply policy that determines to what extent stock may be redistributed from facilities with excess stock to those experiencing shortages. There are storage, shortage, and transportation costs. An ordering policy that minimizes expected costs is sought. If the initial stock is sufficiently small and certain other conditions are fulfilled, it is optimal to order up to a certain base stock level at each facility. The special supply policy in which each facility except facility 1 passes its shortages on to a given lower numbered facility called its direct supplier is examined in some detail. Bounds on the base stock levels are obtained. It is also shown that if the demand distribution at facility j is stochastically smaller (“spread” less) than that at another facility k having the same direct supplier and if certain other conditions are fulfilled, then the optimal base stock level (“virtual” stock out probability) at j is less than (greater than) or equal to that at facility k.  相似文献   
105.
This paper explores the relationship between research project cost and expected time to completion under various scheduling strategies; it assumes that many potential technical approaches to the research problem can be identified; and that each approach has a low but finite subjective probability of success. It is shown that under a variety of assumptions, expected time to project completion can be reduced, but that as a result expected project cost rises at an increasing rate. Some cases in which this convex time-cost tradeoff relationship might not hold generally are identified. When the time-cost tradeoff function is convex, the desirability of concurrent as opposed to series scheduling of approaches depends crucially upon the depth of the stream of benefits expected to be realized upon successful project completion. The deeper the benefit stream is, the more desirable concurrent scheduling is.  相似文献   
106.
The network redesign problem attempts to design an optimal network that serves both existing and new demands. In addition to using spare capacity on existing network facilities and deploying new facilities, the model allows for rearrangement of existing demand units. As rearrangements mean reassigning existing demand units, at a cost, to different facilities, they may lead to disconnecting of uneconomical existing facilities, resulting in significant savings. The model is applied to an access network, where the demands from many sources need to be routed to a single destination, using either low‐capacity or high‐capacity facilities. Demand from any location can be routed to the destination either directly or through one other demand location. Low‐capacity facilities can be used between any pair of locations, whereas high‐capacity facilities are used only between demand locations and the destination. We present a new modeling approach to such problems. The model is described as a network flow problem, where each demand location is represented by multiple nodes associated with demands, low‐capacity and high‐capacity facilities, and rearrangements. Each link has a capacity and a cost per unit flow parameters. Some of the links also have a fixed‐charge cost. The resulting network flow model is formulated as a mixed integer program, and solved by a heuristic and a commercially available software. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 487–506, 1999  相似文献   
107.
In this paper the inventory problem with backorders both deterministic and stochastic is studied using trade-off analysis in the context of vector optimization theory. The set of Pareto-optimal solutions is geometrically characterized in both the constrained and unconstrained cases. Moreover, a new way of utilizing Pareto-optimality concepts to handle classical inventory problems with backorders is derived. A new analysis of these models is done by means of a trade-off analysis. New solutions are shown, and an error bound for total inventory cost is provided. Other models such as multi-item or stochastic lead-time demand inventory problems are addressed and their Pareto-optimal solution sets are obtained. An example is included showing the additional applicability of this kind of analysis to handle parametric problems. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 83–98, 1998  相似文献   
108.
The search theory open literature has paid little, if any, attention to the multiple-searcher, moving-target search problem. We develop an optimal branch-and-bound procedure and six heuristics for solving constrained-path problems with multiple searchers. Our optimal procedure outperforms existing approaches when used with only a single searcher. For more than one searcher, the time needed to guarantee an optimal solution is prohibitive. Our heuristics represent a wide variety of approaches: One solves partial problems optimally, two use paths based on maximizing the expected number of detections, two are genetic algorithm implementations, and one is local search with random restarts. A heuristic based on the expected number of detections obtains solutions within 2% of the best known for each one-, two-, and three-searcher test problem considered. For one- and two-searcher problems, the same heuristic's solution time is less than that of other heuristics. For three-searcher problems, a genetic algorithm implementation obtains the best-known solution in as little as 20% of other heuristic solution times. © 1996 John Wiley & Sons, Inc.  相似文献   
109.
Because Pakistan has varying climates and terrains, the Pakistan Army rotates its units between peacetime locations so that no unit endures inequitable hardship or enjoys unfair advantage. Army policy specifies strict constraints on unit rotations, such as the length of a unit's stay in any location, the number of units moving at any time, and the allowable replacements for any moving unit. Scheduling rotations manually in accordance with these rules, as is currently practiced, is extremely difficult and time consuming. This article presents an integer programming model that finds feasible, minimum-cost schedules for the Pakistan Army's desired planning horizons. The model also ensures that the units are positioned at the end of the planning horizon so that feasible schedules exist for future planners. The model is implemented with commercially available optimization software. Schedules are obtained for realistic test problems in less than an hour on a personal computer. © 1995 John Wiley & Sons, Inc.  相似文献   
110.
A two-unit cold standby production system with one repairman is considered. After inspection of a failed unit the repairman chooses either a slow or a fast repair rate to carry out the corresponding amount of work. At system breakdown the repairman has an additional opportunity to switch to the fast rate. If there are no fixed costs associated with system breakdowns, then the policy which minimizes longrun average costs is shown to be a two-dimensional control limit rule. If fixed costs are incurred every time the system breaks down, then the optimal policy is not necessarily of control limit type. This is illustrated by a counterexample. Furthermore, we present several performance measures for this maintenance system controlled by a two-dimensional control limit rule. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号