首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   4篇
  2021年   2篇
  2019年   1篇
  2017年   5篇
  2015年   2篇
  2013年   15篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1976年   5篇
  1975年   5篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
31.
This article deals with the problem of scheduling jobs with random processing times on single machine in order to minimize the expected variance of job completion times. Sufficient conditions for the existence of V-shaped optimal sequences are derived separately for general and ordered job processing times. It is shown that when coefficient of variation of random processing times are bounded by a certain value, an optimal sequence is V-shaped. © 1997 John Wiley & Sons, Inc.  相似文献   
32.
Starting from a safe base, an Infiltrator tries to reach a sensitive zone within a given time limit without being detected by a Guard. The Infiltrator can move with speed at most u, while the Guard can only perform a restricted number of searches. A discrete variant of this zero-sum game played on a graph consisting of two vertices joined by n nonintersecting arcs is investigated. Optimal strategies and an explicit expression for its value are obtained. © 1996 John Wiley & Sons, Inc.  相似文献   
33.
We consider server scheduling on parallel dedicated machines to minimize the makespan. Each job has a loading operation and a processing operation. The loading operation requires a server that serves all the jobs. Each machine has a given set of jobs to process, and the processing sequence is known and fixed. We design a polynomial‐time algorithm to solve the two‐machine case of the problem. When the number of machines is arbitrary, the problem becomes strongly NP‐hard even if all the jobs have the same processing length or all the loading operations require a unit time. We design two heuristic algorithms to treat the case where all the loading times are unit and analyze their performance.  相似文献   
34.
In this article we consider two versions of two-on-two homogeneous stochastic combat and develop expressions, in each case, for the state probabilities. The models are natural generalizations of the exponential Lanchester square law model. In the first version, a marksman whose target is killed resumes afresh the killing process on a surviving target; in the second version, the marksman whose target is killed merely uses up his remaining time to a kill on a surviving target. Using the state probabilities we then compute such important combat measures as (1) the mean and variance of the number of survivors as they vary with time for each of the sides, (2) the win probabilities for each of the sides, and (3) the mean and variance of the battle duration time. As an application, computations were made for the specific case of a gamma (2) interfiring time random variable for each side and the above combat measures were compared with the appropriate exponential and deterministic Lanchester square law approximations. The latter two are shown to be very poor approximations in this case.  相似文献   
35.
The article considers a two-person zero-sum game in which a searcher with b bombs wishes to destroy a mobile hider. The players are restricted to move on a straight line with maximum speeds v and u satisfying v > u > 0; neither player can see the other but each knows the other's initial position. The bombs all have destructive radius R and there is a time lag T between the release of a bomb and the bomb exploding. The searcher gets 1 unit if the hider is destroyed and 0 if he survives. A solution is given for b = 1, and extended to b > 1 when the time lag is small. Various applications of the game are discussed.  相似文献   
36.
We consider preventive transshipments between two stores in a decentralized system with two demand subperiods. Replenishment orders are made before the first subperiod, and the stores may make transshipments to one another between the subperiods. We prove that the transshipment decision has a dominant strategy, called a control‐band conserving transfer policy, under which each store chooses a quantity to transship in or out that will keep its second‐subperiod starting inventory level within a range called a control band. We prove that the optimal replenishment policy is a threshold policy in which the threshold depends on the capacity level at the other store. Finally, we prove that there does not exist a transfer price that coordinates the decentralized supply chain. Our research also explains many of the differences between preventive and emergency transshipments, including differences in the optimal transfer policies and the existence or nonexistence of transfer prices that coordinate the system. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
37.
Frequently in warfare, a force is required to attack a perishable enemy target system - a target system where the targets are detected seemingly at random, and if not immediately attacked, will shortly escape from detection. A conflicting situation arises when an attack element detects a target of relatively low value and has to decide whether to expend his resources on that particular target or to wait for a more lucrative one, hoping one will be found. This paper provides a decision rule giving the least valued target that should be attacked as well as the resources that should be expended as a function of the attack element's remaining mission time.  相似文献   
38.
This paper investigates the problem of determining the optimal location of plants, and their respective production and distribution levels, in order to meet demand at a finite number of centers. The possible locations of plants are restricted to a finite set of sites, and the demands are allowed to be random. The cost structure of operating a plant is dependent on its location and is assumed to be a piecewise linear function of the production level, though not necessarily concave or convex. The paper is organized in three parts. In the first part, a branch and bound procedure for the general piecewise linear cost problem is presented, assuming that the demand is known. In the second part, a solution procedure is presented for the case when the demand is random, assuming a linear cost of production. Finally, in the third part, a solution procedure is presented for the general problem utilizing the results of the earlier parts. Certain extensions, such as capacity expansion or reduction at existing plants, and geopolitical configuration constraints can be easily incorporated within this framework.  相似文献   
39.
We consider the transportation problem of determining nonnegative shipments from a set of m warehouses with given availabilities to a set of n markets with given requirements. Three objectives are defined for each solution: (i) total cost, TC, (ii) bottleneck time, BT (i.e., maximum transportation time for a positive shipment), and (iii) bottleneck shipment, SB (i.e., total shipment over routes with bottleneck time). An algorithm is given for determining all efficient (pareto-optimal or nondominated) (TC, BT) solution pairs. The special case of this algorithm when all the unit cost coefficients are zero is shown to be the same as the algorithms for minimizing BT. provided by Szwarc and Hammer. This algorithm for minimizing BT is shown to be computationally superior. Transportation or assignment problems with m=n=100 average about a second on the UNIVAC 1108 computer (FORTRAN V)) to the threshold algorithm for minimizing BT. The algorithm is then extended to provide not only all the efficient (TC, BT) solution pairs but also, for each such BT, all the efficient (TC, SB) solution pairs. The algorithms are based on the cost operator theory of parametric programming for the transportation problem developed by the authors.  相似文献   
40.
In this paper we consider a multiperiod deterministic capacity expansion and shipment planning problem for a single product. The product can be manufactured in several producing regions and is required in a number of markets. The demands for each of the markets are non-decreasing over time and must be met exactly during each time period (i.e., no backlogging or inventorying for future periods is permitted). Each region is assumed to have an initial production capacity, which may be increased at a given cost in any period. The demand in a market can be satisfied by production and shipment from any of the regions. The problem is to find a schedule of capacity expansions for the regions and a schedule of shipments from the regions to the markets so as to minimize the discounted capacity expansion and shipment costs. The problem is formulated as a linear programming model, and solved by an efficient algorithm using the operator theory of parametric programming for the transporation problem. Extensions to the infinite horizon case are also provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号