首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   8篇
  国内免费   1篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1996年   3篇
  1988年   1篇
排序方式: 共有76条查询结果,搜索用时 46 毫秒
11.
In order to understand the mechanism of conoidal fracture damage caused by a high-speed fragment-simulating projectile in titanium alloy layer of a composite armor plate composed of titanium- and aluminum-alloy layers, the ballistic interaction process was successfully simulated based on the Tuler-Butcher and GISSMO coupling failure model. The simulated conoidal fracture morphology was in good agreement with the three-dimensional industrial-computed-tomography image. Further, three main damage zones (zones I, II, and III) were identified besides the crater area, which are located respectively near the crater area, at the back of the target plate, and directly below the crater area. Under the high-speed-impact conditions, in zone II, cracks began to form at the end of the period of crack formation in zone I, but crack formation in zone III started before the end of crack formation in zone II. Further, the damage mechanism differed for different stress states. The microcracks in zone I were formed both by void connection and shear deformation. In the formation of zone I, the stress triaxiality ranged from-2.0 to-1.0, and the shear failure mechanism played a dominant role. The microcracks in zone II showed the combined features of shear deformation and void connection, and during the for-mation process, the stress triaxiality was between 0 and 0.5 with a mixed failure mode. Further, the microcracks in zone III showed obvious characteristics of void connection caused by local melting. During the zone III formation, the triaxiality was 1.0-1.9, and the ductile fracture mechanism was dominant, which also reflects the phenomenon of spallation.  相似文献   
12.
Due to its high strength, high density, high hardness and good penetration capabilities, Depleted ura-nium alloys have already shined in armor-piercing projectiles. There should also be a lot of room for improvement in the application of fragment killing elements. Therefore, regarding the performance of the depleted uranium alloy to penetrate the target plate, further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy. To study the difference in penetration per-formance between depleted uranium alloy and tungsten alloy fragments,firstly, a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model. Then, taking the cylindrical fragment penetration target as the research object, the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy frag-ment and tungsten alloy fragment were compared and analyzed, by using finite element software ANSYS/LS-DYNA and Lagrange algorithm. Lastly, the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research. The results show that in the penetration process of the DU and tungsten alloy fragments, the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance. Under the same conditions, the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture, and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment.  相似文献   
13.
在分析我军通用雷达装备质量等级划分的历史情况的基础上,依据装备的实际,从全寿命的观点出发,重点提出了进行质量等级划分和质量等级评定应考虑的要素,指出重新划分质量等级的依据,并首次提出了评定质量等级的数学模型。  相似文献   
14.
《防务技术》2022,18(11):2045-2051
By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti–5Al–5V–5Mo–3Cr (Ti-5553) alloy with lamellar microstructure and bimodal microstructure. Lamellar alloy tends to form adiabatic shearing band (ASB) at low compression strain, while bimodal alloy is considerably ASB-resistant. Comparing with the initial microstructure of Ti-5553 alloy, we find that the microstructure of the ASB changes dramatically. Adiabatic shear of lamellar Ti-5553 alloy not only results in the formation of recrystallized β nano-grains within the ASB, but also leads to the chemical redistribution of the alloying elements such as Al, V, Cr and Mo. As a result, the alloying elements distribute evenly in the ASB. In contrast, the dramatic adiabatic shear of bimodal alloy might give rise to the complete lamination of the globular primary α grain and the equiaxial prior β grain, which is accompanied by the dynamic recrystallization of α lamellae and β lamellae. As a result, ASB of bimodal alloy is composed of α/β nano-multilayers. Chemical redistribution does not occur in ASB of bimodal alloy. Bimodal Ti-5553 alloy should be a promising candidate for high performance armors with high mass efficiency due to the processes high dynamic flow stress and excellent ASB-resistance.  相似文献   
15.
《防务技术》2019,15(3):353-362
AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.  相似文献   
16.
概述了热塑性互穿聚合物网络(TIPN)的研究进展及其结构特点、制各方法和熔体的流动性,并对TIPN的前景作了简要的分析。  相似文献   
17.
试样用硫酸溶解,盐酸酸化,使Pb2 沉淀为PbSO4,Sb3 水解沉淀为SbOC l,Ag 沉淀为AgC l除去。在0.6mol/L硫酸溶液中,锡与苯芴酮-溴化十六烷基三甲铵生成有色络合物,于波长510nm处测量吸光度。对于残余微量的锑、铁的干扰,可加入酒石酸、高锰酸钾和抗坏血酸消除。该方法条件易控制、稳定、准确,对锡量在0.01~1(%)测定较为优越。  相似文献   
18.
雾化空气法生产微细铝粉已有近 70年历史 ,但其生产过程极易发生爆炸 ,氮气由于其良好的防火性能 ,在生产中代替空气将会极大降低爆炸的可能性。  相似文献   
19.
高三现代文阅读是高三语文备考的重点和难点,常规的备考指导耗时费力,但收效微小。以2013———2015年高考全国卷小说阅读为例,从提高阅读速度、学会主动阅读两大方面开发《如何阅读一本书》相关理念和方法,以指导高三学生的现代文阅读的备考,从而培养高三学生高效阅读的习惯和良好的阅读爱好。  相似文献   
20.
《Arms and Armour》2013,10(2):149-162
Firth’s were the first of the Sheffield steel makers to enter the field armaments. Their involvement with Colt has been outlined in an article in the journal of the Colt Collectors Association in America and their activities as steelmakers to the small-arms industries has been covered in a previous issue of this Journal. This article gives a brief overview of their involvement as manufacturers in the field of heavy armaments, being the first to make all-steel guns and their evolving role in the use of steel for ordnance, culminating in the displacement of wrought iron by the adoption of steel for ordnance manufacture by the Royal Gun Factory in the 1880s. It also highlights their development of stainless steel in this context.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号