首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   6篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   1篇
  2014年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  1994年   1篇
  1989年   1篇
排序方式: 共有29条查询结果,搜索用时 281 毫秒
11.
应用改进的条形传递函数方法 ,建立了弹性薄板的二结线四自由度条形单元模型 ,用于分析系统的静力响应。用结线将矩形区域划分为条形单元 ,将边界结线离散 ,以内部结线和边界结点的位移和转角为未知量 ,采用三次插值 ,得到能够与有限元单元耦合求解的超级单元。利用广义函数给出了一种精确积分方法 ,可以得到有关矩阵的显式表达 ,得到提高了求解精度和效率。  相似文献   
12.
利用Ls—DYNA软件对钨合金长杆弹垂直侵彻单层和双层横向运动钢板进行了数值计算。通过分析长杆弹的塑性变形、速度降、动能降和横向速度,得到了单层和双层板横向运动速度与影响长杆弹侵彻能力因素的关系。仿真结果表明:随着运动板速度的增加,运动板对长杆弹的侵蚀加剧,长杆弹的速度降、动能降增大;运动板相同速度下,虽然单层板的冲击能使长杆弹获得较大横向速度,但双层板比单层板对长杆弹的干扰效果更明显。  相似文献   
13.
粘-弹层合板的阻尼振动和横向应力   总被引:8,自引:3,他引:5  
应用混合分层理论在板的厚度方向取二次插值函数描述每个数值层内位移沿厚度方向的变化规律,采用三次和四次插值函数描述横向应力沿厚度方向的变化,推导出粘-弹层合板的动力学方程,并得出简支粘-弹层合板自由阻尼振动的解.数值结果不仅与三维结果吻合较好,且能够计算合理协调的横向应力.  相似文献   
14.
基于ABAQUS/Explicit非线性有限元分析程序,通过二次开发利用含损伤的Johnson-Cook本构模拟靶板材料,对刚性平头弹丸垂直侵彻不同厚度的金属靶板进行了数值仿真,实现了侵彻过程的可视化。结果表明:网格密度对计算结果有影响,但随着网格密度增加,结果趋于收敛;侵彻过程中,弹丸与靶板发生了多次碰撞,靶板的塑性变形局限在很窄的剪切带内;对数值计算结果与试验结果进行了比较,发现二者吻合得较好。相关结论对防护结构的设计具有指导意义。  相似文献   
15.
基于对预埋主接头蜂窝板的静力与稳定性分析,对小卫星主接头进行选型优化。采用三明治夹心板理论建立预埋分叉式和面板式小卫星主结构连接接头的蜂窝板试件有限元模型,分析得到了蜂窝板最大应力值与失稳载荷,通过与试验结果的对比分析确定了蜂窝板试件破坏原因。在此基础上讨论结构参数对蜂窝板承载性能的影响,确定出最优的接头设计形式。  相似文献   
16.
The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous (FGP) variable-thickness plates by using an edge-based smoothed finite element method (ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element (MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index (k) and maximum porosity distributions (Ω) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.  相似文献   
17.
This article deals with the investigation of the effects of porosity distributions on nonlinear free vibration and transient analysis of porous functionally graded skew (PFGS) plates. The effective material properties of the PFGS plates are obtained from the modified power-law equations in which gradation varies through the thickness of the PFGS plate. A nonlinear finite element (FE) formulation for the overall PFGS plate is derived by adopting first-order shear deformation theory (FSDT) in conjunction with von Karman’s nonlinear strain displacement relations. The governing equations of the PFGS plate are derived using the principle of virtual work. The direct iterative method and Newmark’s integration technique are espoused to solve nonlinear mathematical relations. The influences of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the PFGS plate for different skew angles are studied in various parameters. The effects of volume fraction grading index and skew angle on the plate’s nonlinear dynamic responses for various porosity distributions are illustrated in detail.  相似文献   
18.
Ian G.Crouch 《防务技术》2021,17(6):1887-1894
The ballistic performance, and behaviour, of an armour system is governed by two major sets of variables, geometrical and material. Of these, the consistency of performance, especially against small arms ammunition, will depend upon the consistency of the properties of the constituent materials. In a body armour system for example, fibre diameter, areal density of woven fabric, and bulk density of ceramic are examples of critical parameters and monitoring such parameters will form the backbone of associated quality control procedures. What is often overlooked, because it can fall into the User’s domain, are the interfaces that exist between the various products; the carrier, the Soft Armour Insert (SAI), and the one or two hard armour plates (HAP1 and HAP2). This is especially true if the various products are sourced from different suppliers.There are between 30 and 150 individual layers within a typical body armour system, and each of the interfaces between each of those layers will, in some way or another, contribute to the ballistic performance of the system. For example, consider the following interfaces/interlayers: (i) the frictional, sliding, inter-ply surfaces within a soft armour pack, and also between the pack and the carrier, (ii) the air-gaps that may develop within the soft armour pack, (iii) the interconnecting space between the soft armour pack and the hard armour plate, (iv) the nature of the interfaces between adjacent plies of a multiplied backing laminate, even in a highly compressed Ultra High Molecular Weight Polyethylene (UHMWPE) variant, (v) the interlayer between the ceramic and its substrate, within a HAP, and (vi) the geometrical fit between two hard armour plates within a stacked body armour system. This paper will provide a User-friendly overview of all such interfaces and provide unique guidance as to their criticality and influence.  相似文献   
19.
In this paper, the ballistic impact experiments, including impact test chamber and impact double-spaced plates, were conducted to study the reaction behaviors of a novel functionally graded reactive material (FGRM), which was composed of polytetrafluoroethylene/aluminum (PTFE/Al) and PTFE/Al/bismuth trioxide (Bi2O3). The experiments showed that the impact direction of the FGRM had a significant effect on the reaction. With the same impact velocity, when the first impact material was PTFE/Al/Bi2O3, compared with first impact material PTFE/Al, the FGRM induced higher overpressure in the test chamber and larger damaged area of double-spaced plates. The theoretical model, which considered the shock wave generation and propagation, the effect of the shock wave on reaction efficiency, and penetration behaviors, was developed to analyze the reaction behaviors of the FGRM. The model predicted first impact material of the FGRM with a higher shock impedance was conducive to the reaction of reactive materials. The conclusion of this study provides significant information about the design and application of reactive materials.  相似文献   
20.
In this work, we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials (FGMs). A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement. The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency. The implementation is validated against experimental data and other nu-merical experiments on orthotropic materials with different material orientations. The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle. The study is then extended to the analysis of orthotropic FGMs. It is observed that, if the gradation in fracture properties is neglected, the material gradient plays a secondary role, with the fracture behaviour being dominated by the orthotropy of the material. However, when the toughness increases along the crack propagation path, a substantial gain in fracture resistance is observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号