首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   49篇
  2021年   2篇
  2019年   11篇
  2018年   4篇
  2017年   16篇
  2016年   19篇
  2015年   15篇
  2014年   15篇
  2013年   67篇
  2012年   14篇
  2011年   20篇
  2010年   21篇
  2009年   19篇
  2008年   22篇
  2007年   31篇
  2006年   20篇
  2005年   14篇
  2004年   18篇
  2003年   12篇
  2002年   14篇
  2001年   10篇
  2000年   11篇
  1999年   2篇
排序方式: 共有377条查询结果,搜索用时 15 毫秒
101.
Assemble in Advance (AIA) policy reduces assembly cost due to advance planning, while Assemble to Order (ATO) policy eliminates assembly of excessive (more than demanded) units. The tradeoffs between the two policies have been studied in the past for single product environments. Moreover, it was shown that it is beneficial to employ AIA and ATO simultaneously. In this article, we study the employment of such a composite assembly policy in a multiproduct environment with component commonality. When common components are used, ATO may also enable us to benefit from the risk pooling effect. We provide important managerial insights such as: the multiperiod problem is myopic and changes in inventory levels due to the use of common components, and demonstrate the potential profit increase compared to other policies.© 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
102.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we study burn‐in procedure for a system that is maintained under periodic inspection and perfect repair policy. Assuming that the underlying lifetime distribution of a system has an initially decreasing and/or eventually increasing failure rate function, we derive upper and lower bounds for the optimal burn‐in time, which maximizes the system availability. Furthermore, adopting an age replacement policy, we derive upper and lower bounds for the optimal age parameter of the replacement policy for each fixed burn‐in time and a uniform upper bound for the optimal burn‐in time given the age replacement policy. These results can be used to reduce the numerical work for determining both optimal burn‐in time and optimal replacement policy. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
103.
We consider a mixed‐model assembly line (MMAL) comprised a set of workstations and a conveyor. The workstations are arranged in a serial configuration. The conveyor moves at a constant speed along the workstations. Initial units belonging to different models are successively fed onto the conveyor, and they are moved by the conveyor to pass through the workstations to gradually generate final products. All assembling tasks are manually performed with operation times to be stochastic. An important performance measure of MMALs is overload times that refer to uncompleted operations for operators within their work zones. This paper establishes a method to analyze the expected overload times for MMALs with stochastic operation times. The operation processes of operators form discrete time nonhomogeneous Markov processes with continuous state spaces. For a given daily production schedule, the expected overload times involve in analyzing the Markov processes for finite horizon. Based on some important properties of the performance measure, we propose an efficient approach for calculating the expected overload times. Numerical computations show that the results are very satisfactory. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
104.
This study presents power‐of‐two policies for a serial inventory system with constant demand rate and incremental quantity discounts at the most upstream stage. It is shown that an optimal solution is nested and follows a zero‐inventory ordering policy. To prove the effectiveness of power‐of‐two policies, a lower bound on the optimal cost is obtained. A policy that has a cost within 6% of the lower bound is developed for a fixed base planning period. For a variable base planning period, a 98% effective policy is provided. An extension is included for a system with price dependent holding costs. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
105.
We consider the decision‐making problem of dynamically scheduling the production of a single make‐to stock (MTS) product in connection with the product's concurrent sales in a spot market and a long‐term supply channel. The spot market is run by a business to business (B2B) online exchange, whereas the long‐term channel is established by a structured contract. The product's price in the spot market is exogenous, evolves as a continuous time Markov chain, and affects demand, which arrives sequentially as a Markov‐modulated Poisson process (MMPP). The manufacturer is obliged to fulfill demand in the long‐term channel, but is able to rein in sales in the spot market. This is a significant strategic decision for a manufacturer in entering a favorable contract. The profitability of the contract must be evaluated by optimal performance. The current problem, therefore, arises as a prerequisite to exploring contracting strategies. We reveal that the optimal strategy of coordinating production and sales is structured by the spot price dependent on the base stock and sell‐down thresholds. Moreover, we can exploit the structural properties of the optimal strategy to conceive an efficient algorithm. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
106.
The service‐provision problem described in this paper comes from an application of distributed processing in telecommunications networks. The objective is to maximize a service provider's profit from offering computational‐based services to customers. The service provider has limited capacity and must choose which of a set of software applications he would like to offer. This can be done dynamically, taking into consideration that demand for the different services is uncertain. The problem is examined in the framework of stochastic integer programming. Approximations and complexity are examined for the case when demand is described by a discrete probability distribution. For the deterministic counterpart, a fully polynomial approximation scheme is known 2 . We show that introduction of stochasticity makes the problem strongly NP‐hard, implying that the existence of such a scheme for the stochastic problem is highly unlikely. For the general case a heuristic with a worst‐case performance ratio that increases in the number of scenarios is presented. Restricting the class of problem instances in a way that many reasonable practical problem instances satisfy allows for the derivation of a heuristic with a constant worst‐case performance ratio. Worst‐case performance analysis of approximation algorithms is classical in the field of combinatorial optimization, but in stochastic programming the authors are not aware of any previous results in this direction. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
107.
In this paper we present a componentwise delay measure for estimating and improving the expected delays experienced by customers in a multi‐component inventory/assembly system. We show that this measure is easily computed. Further, in an environment where the performance of each of the item delays could be improved with investment, we present a solution that aims to minimize this measure and, in effect, minimizes the average waiting time experienced by customers. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   
108.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   
109.
Since a system and its components usually deteriorate with age, preventive maintenance (PM) is often performed to restore or keep the function of a system in a good state. Furthermore, PM is capable of improving the health condition of the system and thus prolongs its effective age. There has been a vast amount of research to find optimal PM policies for deteriorating repairable systems. However, such decisions involve numerous uncertainties and the analyses are typically difficult to perform because of the scarcity of data. It is therefore important to make use of all information in an efficient way. In this article, a Bayesian decision model is developed to determine the optimal number of PM actions for systems which are maintained according to a periodic PM policy. A non‐homogeneous Poisson process with a power law failure intensity is used to describe the deteriorating behavior of the repairable system. It is assumed that the status of the system after a PM is somewhere between as good as new for a perfect repair and as good as old for a minimal repair, and for failures between two preventive maintenances, the system undergoes minimal repairs. Finally, a numerical example is given and the results of the proposed approach are discussed after performing sensitivity analysis. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
110.
In the flow shop delivery time problem, a set of jobs has to be processed on m machines. Every machine has to process each one of the jobs, and every job has the same routing through the machines. The objective is to determine a sequence of the jobs on the machines so as to minimize maximum delivery completion time over all the jobs, where the delivery completion time of a job is the sum of its completion time, and the delivery time associated with that job. In this paper, we prove the asymptotic optimality of the Longest Delivery Time algorithm for the static version of this problem, and the Longest Delivery Time among Available Jobs (LDTA) algorithm for the dynamic version of this problem. In addition, we present the result of computational testing of the effectiveness of these algorithms. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号