首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   11篇
  2022年   1篇
  2020年   8篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
排序方式: 共有61条查询结果,搜索用时 265 毫秒
31.
This article is concerned with the determination of pricing strategies for a firm that in each period of a finite horizon receives replenishment quantities of a single product which it sells in two markets, for example, a long‐distance market and an on‐site market. The key difference between the two markets is that the long‐distance market provides for a one period delay in demand fulfillment. In contrast, on‐site orders must be filled immediately as the customer is at the physical on‐site location. We model the demands in consecutive periods as independent random variables and their distributions depend on the item's price in accordance with two general stochastic demand functions: additive or multiplicative. The firm uses a single pool of inventory to fulfill demands from both markets. We investigate properties of the structure of the dynamic pricing strategy that maximizes the total expected discounted profit over the finite time horizon, under fixed or controlled replenishment conditions. Further, we provide conditions under which one market may be the preferred outlet to sale over the other. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 531–549, 2015  相似文献   
32.
A change order is frequently initiated by either the supplier or the buyer, especially when the contract is long‐term or when the contractual design is complex. In response to a change order, the buyer can enter a bargaining process to negotiate a new price. If the bargaining fails, she pays a cancellation fee (or penalty) and opens an auction. We call this process the sequential bargaining‐auction (BA). At the time of bargaining, the buyer is uncertain as to whether the bargained price is set to her advantage; indeed, she might, or might not, obtain a better price in the new auction. To overcome these difficulties, we propose a new change‐order‐handling mechanism by which the buyer has an option to change the contractual supplier after bargaining ends with a bargained price. We call this the option mechanism. By this mechanism, the privilege of selling products or services is transferred to a new supplier if the buyer exercises the option. To exercise the option, the buyer pays a prespecified cash payment, which we call the switch price, to the original supplier. If the option is not exercised, the bargained price remains in effect. When a switch price is proposed by the buyer, the supplier decides whether or not to accept it. If the supplier accepts it, the buyer opens an auction. The option is exercised when there is a winner in the auction. This article shows how, under the option mechanism, the optimal switch price and the optimal reserve price are determined. Compared to the sequential BA, both the buyer and the supplier benefit. Additionally, the option mechanism coordinates the supply chain consisting of the two parties. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 248–265, 2015  相似文献   
33.
In this article, we consider a loss‐averse newsvendor with stochastic demand. The newsvendor might procure options when demand is unknown, and decide how many options to execute only after demand is revealed. If the newsvendor reserves too many options, he would incur high reservation costs. Yet reserving too few could result in lost sales. So the newsvendor faces a trade‐off between reservation costs and losing sales. When there are multiple options available, the newsvendor has to consider how many units of each to reserve by studying the trade‐off between flexibility and costs. We show how the newsvendor's loss aversion behavior affects his ordering decision, and propose an efficient algorithm to compute his optimal solution in the general case with n options. We also present examples showing how the newsvendor's ordering strategy changes as loss aversion rises. © 2014 Wiley Periodicals, Inc. 62:46–59, 2015  相似文献   
34.
We consider the single‐server constant retrial queue with a Poisson arrival process and exponential service and retrial times. This system has not waiting space, so the customers that find the server busy are forced to abandon the system, but they can leave their contact details. Hence, after a service completion, the server seeks for a customer among those that have unsuccessfully applied for service but left their contact details, at a constant retrial rate. We assume that the arriving customers that find the server busy decide whether to leave their contact details or to balk based on a natural reward‐cost structure, which incorporates their desire for service as well as their unwillingness to wait. We examine the customers' behavior, and we identify the Nash equilibrium joining strategies. We also study the corresponding social and profit maximization problems. We consider separately the observable case where the customers get informed about the number of customers waiting for service and the unobservable case where they do not receive this information. Several extensions of the model are also discussed. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
35.
In this article, we consider a problem in which two suppliers can sell their respective products both individually and together as a bundle, and study the impact of bundle pricing. Four pricing models (centralized, decentralized, coop–comp, and comp–coop) are analyzed with regard to the competition formats and sequences. As one would expect, the firms are always better off when pricing decisions are centralized. However, rather surprisingly, we find that firms may be worse off if the bundle prices are set in a cooperative way; we provide analytical characterization of those instances. Numerical studies show that these insights also hold for some nonlinear demand. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
36.
Transfer pricing refers to the pricing of an intermediate product or service within a firm. This product or service is transferred between two divisions of the firm. Thus, transfer pricing is closely related to the allocation of profits in a supply chain. Motivated by the significant impact of transfer pricing methods for tax purposes on operational decisions and the corresponding profits of a supply chain, in this article, we study a decentralized supply chain of a multinational firm consisting of two divisions: a manufacturing division and a retail division. These two divisions are located in different countries under demand uncertainty. The retail division orders an intermediate product from the upstream manufacturing division and sets the retail price under random customer demand. The manufacturing division accepts or rejects the retail division's order. We specifically consider two commonly used transfer pricing methods for tax purposes: the cost‐plus method and the resale‐price method. We compare the supply chain profits under these two methods. Based on the newsvendor framework, our analysis shows that the cost‐plus method tends to allocate a higher percentage of profit to the retail division, whereas the resale‐price method tends to achieve a higher firm‐wide profit. However, as the variability of demand increases, our numerical study suggests that the firm‐wide and divisional profits tend to be higher under the cost‐plus method than they are under the resale‐price method. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
37.
This article addresses a single‐item, finite‐horizon, periodic‐review coordinated decision model on pricing and inventory control with capacity constraints and fixed ordering cost. Demands in different periods are random and independent of each other, and their distributions depend on the price in the current period. Each period's stochastic demand function is the additive demand model. Pricing and ordering decisions are made at the beginning of each period, and all shortages are backlogged. The objective is to find an optimal policy that maximizes the total expected discounted profit. We show that the profit‐to‐go function is strongly CK‐concave, and the optimal policy has an (s,S,P) ‐like structure. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
38.
We consider the problem of designing a contract to maximize the supplier's profit in a one‐supplier–one‐buyer relationship for a short‐life‐cycle product. Demand for the finished product is stochastic and price‐sensitive, and only its probability distribution is known when the supply contract is written. When the supplier has complete information on the marginal cost of the buyer, we show that several simple contracts can induce the buyer to choose order quantity that attains the single firm profit maximizing solution, resulting in the maximum possible profit for the supplier. When the marginal cost of the buyer is private information, we show that it is no longer possible to achieve the single firm solution. In this case, the optimal order quantity is always smaller while the optimal sale price of the finished product is higher than the single firm solution. The supplier's profit is lowered while that of the buyer is improved. Moreover, a buyer who has a lower marginal cost will extract more profit from the supplier. Under the optimal contract, the supplier employs a cutoff level policy on the buyer's marginal cost to determine whether the buyer should be induced to sign the contract. We characterize the optimal cutoff level and show how it depends on the parameters of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 41–64, 2001  相似文献   
39.
Capacity providers such as airlines often sell the same capacity to different market segments at different prices to improve their expected revenues. The absence of a secondary market, due to the nontransferability of airline tickets, gives rise to an opportunity for airlines to broker capacity between consumers with different willingness to pay. One way to broker capacity is by the introduction of callable products. The idea is similar to callable bonds where the issuer has the right, but not the obligation, to buy back the bonds at a certain price by a certain date. The idea of callable products was introduced before under the assumption that the fare-class demands are all independent. The independent assumption becomes untenable when there is significant demand recovery (respectively, demand cannibalization) when lower fares are closed (respectively, opened). In this case, consumer choice behavior should be modeled explicitly to make meaningful decisions. In this paper, we consider a general consumer choice model and develop the optimal strategy for callable products. Our numerical study illustrates how callable products are win-win-win, for the capacity provider and for both high and low fare consumers. Our studies also identify conditions for callable products to result in significant improvements in expected revenues.  相似文献   
40.
Ride-hailing platforms such as Uber, Lyft, and DiDi have achieved explosive growth and reshaped urban transportation. The theory and technologies behind these platforms have become one of the most active research topics in the fields of economics, operations research, computer science, and transportation engineering. In particular, advanced matching and dynamic pricing (DP) algorithms—the two key levers in ride-hailing—have received tremendous attention from the research community and are continuously being designed and implemented at industrial scales by ride-hailing platforms. We provide a review of matching and DP techniques in ride-hailing, and show that they are critical for providing an experience with low waiting time for both riders and drivers. Then we link the two levers together by studying a pool-matching mechanism called dynamic waiting (DW) that varies rider waiting and walking before dispatch, which is inspired by a recent carpooling product Express Pool from Uber. We show using data from Uber that by jointly optimizing DP and DW, price variability can be mitigated, while increasing capacity utilization, trip throughput, and welfare. We also highlight several key practical challenges and directions of future research from a practitioner's perspective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号