全文获取类型
收费全文 | 215篇 |
免费 | 40篇 |
国内免费 | 28篇 |
专业分类
283篇 |
出版年
2023年 | 2篇 |
2022年 | 6篇 |
2021年 | 1篇 |
2020年 | 4篇 |
2019年 | 3篇 |
2018年 | 6篇 |
2017年 | 14篇 |
2016年 | 27篇 |
2015年 | 5篇 |
2014年 | 20篇 |
2013年 | 19篇 |
2012年 | 23篇 |
2011年 | 17篇 |
2010年 | 13篇 |
2009年 | 17篇 |
2008年 | 19篇 |
2007年 | 21篇 |
2006年 | 20篇 |
2005年 | 11篇 |
2004年 | 8篇 |
2003年 | 4篇 |
2002年 | 5篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1992年 | 1篇 |
排序方式: 共有283条查询结果,搜索用时 0 毫秒
41.
We study a setting with a single type of resource and with several players, each associated with a single resource (of this type). Unavailability of these resources comes unexpectedly and with player‐specific costs. Players can cooperate by reallocating the available resources to the ones that need the resources most and let those who suffer the least absorb all the costs. We address the cost savings allocation problem with concepts of cooperative game theory. In particular, we formulate a probabilistic resource pooling game and study them on various properties. We show that these games are not necessarily convex, do have non‐empty cores, and are totally balanced. The latter two are shown via an interesting relationship with Böhm‐Bawerk horse market games. Next, we present an intuitive class of allocation rules for which the resulting allocations are core members and study an allocation rule within this class of allocation rules with an appealing fairness property. Finally, we show that our results can be applied to a spare parts pooling situation. 相似文献
42.
43.
A. Garnaev 《海军后勤学研究》2007,54(1):109-114
This paper deals with a two searchers game and it investigates the problem of how the possibility of finding a hidden object simultaneously by players influences their behavior. Namely, we consider the following two‐sided allocation non‐zero‐sum game on an integer interval [1,n]. Two teams (Player 1 and 2) want to find an immobile object (say, a treasure) hidden at one of n points. Each point i ∈ [1,n] is characterized by a detection parameter λi (μi) for Player 1 (Player 2) such that pi(1 ? exp(?λixi)) (pi(1 ? exp(?μiyi))) is the probability that Player 1 (Player 2) discovers the hidden object with amount of search effort xi (yi) applied at point i where pi ∈ (0,1) is the probability that the object is hidden at point i. Player 1 (Player 2) undertakes the search by allocating the total amount of effort X(Y). The payoff for Player 1 (Player 2) is 1 if he detects the object but his opponent does not. If both players detect the object they can share it proportionally and even can pay some share to an umpire who takes care that the players do not cheat each other, namely Player 1 gets q1 and Player 2 gets q2 where q1 + q2 ≤ 1. The Nash equilibrium of this game is found and numerical examples are given. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007 相似文献
44.
Analytical resolution of search theory problems, as formalized by B.O. Koopman, may be applied with some model extension to various resource management issues. However, a fundamental prerequisite is the knowledge of the prior target density. Though this assumption has the definite advantage of simplicity, its drawback is clearly that target reactivity is not taken into account. As a preliminary step towards reactive target study stands the problem of resource planning under a min–max game context. This paper is related to Nakai's work about the game planning of resources for the detection of a stationary target. However, this initial problem is extended by adding new and more general constraints, allowing a more realistic modeling of the target and searcher behaviors. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007 相似文献
45.
In this paper we consider the discrete time/resource trade-off problem in project networks. Given a project network consisting of nodes (activities) and arcs (technological precedence relations), in which the duration of the activities is a discrete, nonincreasing function of the amount of a single renewable resource committed to it, the discrete time/resource trade-off problem minimizes the project makespan subject to precedence constraints and a single renewable resource constraint. For each activity, a work content is specified such that all execution modes (duration/resource requirement pairs) for performing the activity are allowed as long as the product of the duration and the resource requirement is at least as large as the specified work content. We present a tabu search procedure which is based on a decomposition of the problem into a mode assignment phase and a resource-constrained project scheduling phase with fixed mode assignments. Extensive computational experience, including a comparison with other local search methods, is reported. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 553–578, 1998 相似文献
46.
47.
杨隽 《中国人民武装警察部队学院学报》2006,22(4):5-7
分析了目前军队院校科研管理资源配置机制中存在的问题及原因,提出了军队院校建立科学高效优化合理的科研管理资源配置机制的基本思路:建立基于学科的资源优化配置机制;建立和完善资源开放平台和共享机制;建立尊重和适应市场规律、科学合理的人才资源配置机制。 相似文献
48.
49.
由于配置和所运行作业的不同,集群各节点的实时性能差异较大。为提高集群性能,提出节点实时性能自适应的集群资源分配算法 (node real-time performance adaptive cluster resource scheduling algorithm,NPARSA)。节点实时性能用其配置(CPU核数及速度、内存容量、磁盘容量)和实时状态参数(CPU、内存和磁盘的剩余数量及磁盘读写速度)表示。NPARSA根据作业类型自主选择节点性能评价指标的权值,实现节点实时性能对于作业类型的自适应。实时性能最优的节点分配给作业。虚拟机实验和物理集群实验表明,与Spark默认资源分配算法、没有考虑作业类型与节点匹配的算法、使用作业和节点匹配差异程度作为资源分配依据的算法相比,NPARSA能更有效地缩短作业执行时间、提高集群性能。 相似文献
50.