首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   5篇
  2022年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2012年   1篇
  2010年   1篇
  1994年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
张俊九总经理王德臣副总经理会见总公司当选的中国工程院首批院士[本刊讯]6月7日下午,张俊九总经理、王德臣副总经理亲切会见了总公司当选的四位中国工程院首批院士。他们是:北京理工大学校长王越、南京理工大学校长李鸿志、昆明物理研究所所长苏君红、北京理工大学...  相似文献   
2.
近距空爆载荷作用下双层防爆舱壁结构抗爆性能仿真分析   总被引:5,自引:0,他引:5  
为探讨双层舱壁结构的抗爆性能,采用有限元仿真分析了近距空爆载荷作用下结构的动态响应过程和板材最大有效塑性应变随冲击波载荷强度的变化关系以及结构的失效破坏模式和动态吸能特性,并与相同材料同等重量的传统加筋板架进行了比较,最后对抗爆性能较好的CI型双层舱壁结构进行了结构抗爆的近似优化。研究结果表明:双层舱壁结构能够有效避免局部撕裂失效的破坏模式;相同冲击波载荷作用下,双层舱壁结构吸能较大,但结构板材的最大等效塑性应变却比加筋板架小,因而抗爆性能明显优于加筋板架;通过结构抗爆的近似优化可得到抗爆性能更优的双层舱壁结构,可为工程中双层舱壁结构的选型和抗爆防护结构单元的设计提供参考。  相似文献   
3.
为探讨球头弹低速斜侵彻下靶板的破坏机理,通过系列弹道试验,对比分析不同初始速度下弹体的变形、靶板的破坏模式以及靶板的破口大小和形状;同时采用ANSYS/LS-DYNA对弹靶作用过程进行数值模拟。结果表明:低速斜侵彻下靶板响应非完全对称,根据受力特征可将靶板划分为四个不同区域,即接触区、弯曲区、拉伸区、对称区;薄板的穿甲破坏可分为四个不同的阶段,即隆起变形、碟形变形、弯曲变形、弹体贯穿阶段;不同初始速度下靶板出现四种典型的穿甲破坏模式,随着初始速度的增加依次为隆起—碟形变形、隆起—碟形变形—拉弯撕裂破坏、隆起—碟形变形—拉弯剪切破坏、隆起—拉弯剪切破坏。斜侵彻下靶板破口形状为椭圆形,随着初始速度的增加,破口长径不断减小,形状由椭圆形向卵形过渡。  相似文献   
4.
为探讨球头弹低速斜侵彻下靶板的破坏机理,通过系列弹道试验,对比分析了不同初始速度下弹体的变形,靶板的破坏模式,以及靶板的破口大小及形状;同时采用ANSYS/LS-DYNA对弹靶作用过程进行了数值模拟。结果表明:低速斜侵彻下靶板响应非完全对称,根据受力特征可将靶板划分为四个不同区域,即接触区,弯曲区,拉伸区和对称区;薄板的穿甲破坏可分为四个不同的阶段,即隆起变形,碟形变形,弯曲变形,弹体贯穿阶段;不同初始速度下靶板出现四种典型的穿甲破坏模式,随着初始速度的增加依次为隆起—碟形变形,隆起—碟形变形—拉弯撕裂破坏,隆起—碟形变形—拉弯剪切破坏,隆起—拉弯剪切破坏。斜侵彻下靶板破口形状为椭圆形,随着初始速度的增加,破口长径不断减小,形状由椭圆形向卵形过渡。  相似文献   
5.
为探讨陶瓷/薄钢板复合结构靶板(ceramic/thin steel targets,CS靶板)的抗高速侵彻机理,通过弹道试验,分析了3 mm厚SiC陶瓷层和0.6 mm厚钢板层的CS靶板的破坏模式和抗侵彻性能,并与面密度基本相同的纯钢板进行了比较。在此基础上,基于能量守恒原理,建立了CS靶板抗高速侵彻的理论预测模型,并与试验结果进行了对比。结果表明,CS靶板中前陶瓷层的存在,使得后钢板层的破坏模式由剪切冲塞转变为花瓣开裂,大大提升了后钢板层的抗侵彻吸能效率,从而使得CS靶板的整体抗侵彻性能高于等面密度的纯钢板,CS靶板的整体抗侵彻效率较等面密度纯钢板提升15%以上;弹体穿透CS靶板后的剩余速度理论预测值与试验结果吻合较好,相对误差均在5%以内,验证了理论模型的合理性和有效性。  相似文献   
6.
为探讨破片式战斗部空中爆炸下冲击波与破片的先后作用机制,通过分析冲击波和破片在空气中的运动规律,在考虑壳体对冲击波强度的影响下,建立了冲击波与破片先后作用临界爆距的理论计算模型,并进行了实例分析。实例分析验证了理论模型的合理性和有效性。在此基础上,对临界爆距的影响因素进行了讨论,发现战斗部装填系数、装药类型以及壳体厚度对临界爆距的影响较大,而破片质量和形状对临界爆距的影响较小;随装填系数、装药爆热和爆速、破片质量的增大,临界爆距值均相应减小;随着壳体厚度和破片形状不规则度的提高,临界爆距值相应增大。  相似文献   
7.
为探讨蓄液结构的耗能机理,采用瞬态非线性有限元,揭示了杆式弹侵彻下蓄液结构的破坏过程和模式,研究了其能量耗散机制,并对比分析了有无液体时蓄液结构前后面板不同厚度配比下的弹道极限速度。结果表明:弹体侵入蓄液结构后,其冲击动能主要转化为液体的动能;弹体射出后,液体通过空泡膨胀挤压蓄液结构变形的方式,将其动能再逐步转化为结构的变形能。固定蓄液结构前后面板总厚度8mm不变,未蓄液下其弹道极限速度随前后面板厚度比的增大呈先增加后降低的趋势,在前后面板厚度配比为4/4时抗侵彻能力最强;蓄液时其弹道极限度随前后面板厚度比的增加而不断降低,在厚度配比为1/7时抗侵彻能力最强。  相似文献   
8.
加筋板架抗动能穿甲的等效防护厚度研究   总被引:1,自引:0,他引:1  
为研究舰船舷侧结构抗穿甲性能,采用有限元分析了两种典型工况下板架的穿甲破坏模式、弹体的剩余速度和板架的变形吸能规律,提出了基于剪切冲塞模式的剩余速度理论计算模型,比较了不同等效计算方法得到的结果,并将理论计算结果分别与相关文献的实验结果和本文的有限元计算结果进行了比较,两者之间均吻合较好。结果表明,加强筋对板架的抗穿甲性能影响较大,而板架的实际等效厚度是决定其抗穿甲性能的主要因素;不同的等效计算方法与模型相对尺寸、弹体冲击速度以及命中位置有关,对于弹体直径相对较大且初始冲击速度较高时,不同的等效计算方法得到的结果基本一致。  相似文献   
9.
为研究大型舰船水下舷侧防护液舱的破坏机理,根据液舱的承载特性,设计制作缩尺战斗部模型和敞口、密闭两种液舱结构模型,开展两种姿态战斗部近炸下高速破片和冲击波对防护液舱的联合毁伤试验。根据试验后液舱模型的破损情况分析液舱前、后板在典型载荷下的破坏机理,总结分析液舱结构整体的破坏模式和破坏机理。结果表明:高速破片是防护液舱结构的主要防御对象,破片开坑和空化阶段是液舱结构变形破坏的主要阶段,破片群侵彻液舱形成的激波载荷和空化效应引起的挤压载荷是使结构产生变形破坏的主要冲击载荷。  相似文献   
10.
为探讨固支方形钢板结构在空爆冲击波和高速破片联合作用下的动态响应过程及变形破坏模式,利用有限元分析软件ANSYS/LS-DYNA,开展了空爆冲击波和高速破片对固支方板的联合作用数值模拟计算,阐述了固支方板在联合载荷作用下动态响应过程的2个阶段,以及在不同爆距下的变形破坏模式和特点。结果表明,随着爆距增加,在破片密集作用区内,钢板的破坏模式存在从集团冲塞破口到部分穿孔边界撕裂联通,再到无穿孔边界撕裂现象的转换。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号