首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
应用蚁群优化算法(Ant Colony Optimization)求解多目标优化问题已经引起广泛关注,多目标火力分配问题的目标是求出一个合适的武器目标分配方案,使满足决策需要.建立了多目标火力分配的数学模型,提出一种基于指标的蚁群优化算法Indicator-Based Ant Colony Optimization),给出了算法的具体步骤.IBACO的核心思想是利用二元性能指标来引导人工蚂蚁进行搜索,由于该算法中的信息素是根据指标的值来更新的,通过奖励信息素可以强化最优解.仿真实验证明了该算法的有效性,在解决火力分配问题上,所提算法和蚁群优化算法相比具有较好的收敛性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号