排序方式: 共有65条查询结果,搜索用时 0 毫秒
1.
仿生偏振导航传感器仿照昆虫利用天空偏振光进行导航的原理,测量载体的姿态和方位,具有精度高、功耗低等优势,是一种新型的导航传感器.根据偏振导航的原理分析偏振导航传感器的测量参考矢量和导航能力,根据其参考矢量的数量及性质,对偏振导航传感器使用在不同性质载体上的测量进行建模,并提出其对载体进行定姿的条件. 相似文献
2.
3.
测定了溶胀的PPU/PSAB 交联聚合物中链段和侧基的13CT1和NOE ,用VJGM模型和三等价位跃迁内旋转、扩散内旋转以及等价、不等价两位置跃迁内旋转模型分析了其中的主链链段运动和侧基内旋转运动 ,求出了主链和侧基的运动相关时间、扩散系数和活化能等参数 .结果表明PS含量对PPU运动的影响极小 ,PS主链运动活化能与PPU含量存在线性关系 .丙烯酸与苯乙烯共聚对PPU的运动几乎无影响 相似文献
4.
对雷达的全极化欺骗干扰技术研究 总被引:1,自引:0,他引:1
分析了3种针对单极化假目标的鉴别算法,针对单极化干扰的缺陷,提出并分析了一种干扰极化测量雷达的新技术——全极化干扰,介绍了全极化干扰技术的工作原理,并详细分析了全极化干扰机关键部件的设计。 相似文献
5.
The minimum storage‐time sequencing problem generalizes many well‐known problems in combinatorial optimization, such as the directed linear arrangement and the problem of minimizing the weighted sum of completion times, subject to precedence constraints on a single processor. In this paper we propose a new lower bound, based on a Lagrangian relaxation, which can be computed very efficiently. To improve upon this lower bound, we employ a bundle optimization algorithm. We also show that the best bound obtainable by this approach equals the one obtainable from the linear relaxation computed on a formulation whose first Chvàtal closure equals the convex hull of all the integer solutions of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 313–331, 2001 相似文献
6.
在实际应用中多种类型阵列误差同时存在,针对这种情况下阵列误差方位依赖的特点,提出了一种基于流形分离技术(manifold separation technique,MST)的改进多重信号分类(multiple signal classification,MUSIC)算法,可以有效解决多种阵列误差影响下的波达方向估计问题.利用MST获得包含阵列非理想特性的采样矩阵,从而进行精准测向;通过二维傅里叶变换求解二维空间谱,与现有MUSIC校正算法相比,减少了谱峰搜索的运算量.理论分析和仿真验证了该算法的有效性,可为实际问题的解决提供参考. 相似文献
7.
8.
9.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004. 相似文献
10.
Information technology (IT) infrastructure relies on a globalized supply chain that is vulnerable to numerous risks from adversarial attacks. It is important to protect IT infrastructure from these dynamic, persistent risks by delaying adversarial exploits. In this paper, we propose max‐min interdiction models for critical infrastructure protection that prioritizes cost‐effective security mitigations to maximally delay adversarial attacks. We consider attacks originating from multiple adversaries, each of which aims to find a “critical path” through the attack surface to complete the corresponding attack as soon as possible. Decision‐makers can deploy mitigations to delay attack exploits, however, mitigation effectiveness is sometimes uncertain. We propose a stochastic model variant to address this uncertainty by incorporating random delay times. The proposed models can be reformulated as a nested max‐max problem using dualization. We propose a Lagrangian heuristic approach that decomposes the max‐max problem into a number of smaller subproblems, and updates upper and lower bounds to the original problem via subgradient optimization. We evaluate the perfect information solution value as an alternative method for updating the upper bound. Computational results demonstrate that the Lagrangian heuristic identifies near‐optimal solutions efficiently, which outperforms a general purpose mixed‐integer programming solver on medium and large instances. 相似文献