首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   15篇
  国内免费   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
2.
从预警机指挥引导的多机协同空战原则分析出发,针对超视距协同空战决策过程中的不确定性和不完备性问题,提出了一种不完备信息系统中的基于双向启发式属性约简的战术粗决策建模方法。首先考虑粗糙集决策过程中条件属性发生缺失或不确定的情况,根据扩展不完备信息概念建立了不完备决策信息系统的最优完备选择;其次基于分辨矩阵的属性约简算法,以属性频度的大小作为启发信息进行决策信息系统约简的双向选择,得出决策信息系统的最佳约简集合;然后依据使决策最有可能发生的原则,给出决策信息系统的最优选择,以该最优选择为代表提取出决策规则;最后根据软、硬杀伤结合使用的CGF实体超视距协同空战作战想定,建立了CGF实体综合战术决策模型,并通过作战决策实例对该方法的正确性和有效性进行了验证。结果表明:该方法能在作战态势信息不完备的情况下正确给出CGF实体综合战术行为。  相似文献   
3.
There are n customers that need to be served. Customer i will only wait in queue for an exponentially distributed time with rate λi before departing the system. The service time of customer i has distribution Fi, and on completion of service of customer i a positive reward ri is earned. There is a single server and the problem is to choose, after each service completion, which currently in queue customer to serve next so as to maximize the expected total return. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 659–663, 2015  相似文献   
4.
描述了一种双层Powerlink网络的Powerlink网关,用于解决不同层次实时以太网总线之间数据转换以及不同网络之间周期同步的问题。其主要是解决了两层实时Powerlink网络通信时的周期不同步问题,通过使用这一同步机制使下层Powerlink网络在接入上层Powerlink网络时能够同步于上层网络,使每一个接入在同一上层网络的下层网络的动作实际都与上层网络保持同步,从而确保双层网络数据交互的正常进行。  相似文献   
5.
We consider a make‐to‐order production–distribution system with one supplier and one or more customers. A set of orders with due dates needs to be processed by the supplier and delivered to the customers upon completion. The supplier can process one order at a time without preemption. Each customer is at a distinct location and only orders from the same customer can be batched together for delivery. Each delivery shipment has a capacity limit and incurs a distribution cost. The problem is to find a joint schedule of order processing at the supplier and order delivery from the supplier to the customers that optimizes an objective function involving the maximum delivery tardiness and the total distribution cost. We first study the solvability of various cases of the problem by either providing an efficient algorithm or proving the intractability of the problem. We then develop a fast heuristic for the general problem. We show that the heuristic is asymptotically optimal as the number of orders goes to infinity. We also evaluate the performance of the heuristic computationally by using lower bounds obtained by a column generation approach. Our results indicate that the heuristic is capable of generating near optimal solutions quickly. Finally, we study the value of production–distribution integration by comparing our integrated approach with two sequential approaches where scheduling decisions for order processing are made first, followed by order delivery decisions, with no or only partial integration of the two decisions. We show that in many cases, the integrated approach performs significantly better than the sequential approaches. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
6.
This article proposes two dual‐ascent algorithms and uses each in combination with a primal drop heuristic embedded within a branch and bound framework to solve the uncapacitated production assembly distribution system (i.e., supply chain) design problem, which is formulated as a mixed integer program. Computational results indicate that one approach, which combines primal drop and dual‐ascent heuristics, can solve instances within reasonable time and prescribes solutions with gaps between the primal and dual solution values that are less than 0.15%, an efficacy suiting it for actual large‐scale applications. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
7.
We state a balancing problem for mixed model assembly lines with a paced moving conveyor as: Given the daily assembling sequence of the models, the tasks of each model, the precedence relations among the tasks, and the operations parameters of the assembly line, assign the tasks of the models to the workstations so as to minimize the total overload time. Several characteristics of the problem are investigated. A line‐balancing heuristic is proposed based on a lower bound of the total overload time. A practical procedure is provided for estimating the deviation of any given line‐balance solution from the theoretical optimum. Numerical examples are given to illustrate the methodology. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
8.
We study the one-warehouse multi-retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem into single-facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant-factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.  相似文献   
9.
We consider a generalization of the well‐known generalized assignment problem (GAP) over discrete time periods encompassed within a finite planning horizon. The resulting model, MultiGAP, addresses the assignment of tasks to agents within each time period, with the attendant single‐period assignment costs and agent‐capacity constraint requirements, in conjunction with transition costs arising between any two consecutive periods in which a task is reassigned to a different agent. As is the case for its single‐period antecedent, MultiGAP offers a robust tool for modeling a wide range of capacity planning problems occurring within supply chain management. We provide two formulations for MultiGAP and establish that the second (alternative) formulation provides a tighter bound. We define a Lagrangian relaxation‐based heuristic as well as a branch‐and‐bound algorithm for MultiGAP. Computational experience with the heuristic and branch‐and‐bound algorithm on over 2500 test problems is reported. The Lagrangian heuristic consistently generates high‐quality and in many cases near‐optimal solutions. The branch‐and‐bound algorithm is also seen to constitute an effective means for solving to optimality MultiGAP problems of reasonable size. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
10.
基于非独立测试的诊断策略优化生成   总被引:1,自引:0,他引:1       下载免费PDF全文
诊断策略优化设计是测试性设计中的一项重要内容.实际中的测试彼此间并非独立,即测试费用依赖于测试的先后顺序,针对这一问题,提出将测试划分成不同的测试模式,规定当一个测试序列中存在模式变换时必须考虑附加的转换费用.建立了同时考虑测试费用和模式转换费用启发式评估函数,并基于该启发式评估函数设计了近似最优的搜索算法,应用案例验证了本算法.试验表明该方法有效地解决了非独立测试的诊断策略优化生成问题.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号