首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有3条查询结果,搜索用时 343 毫秒
1
1.
In this paper, we extend the inventory lot‐size models to allow for inflation and fluctuating demand (which is more general than constant, increasing, decreasing, and log‐concave demand patterns). We prove that the optimal replenishment schedule not only exists but is also unique. Furthermore, we show that the total cost associated with the inventory system is a convex function of the number of replenishments. Hence, the search for the optimal number of replenishments is simplified to finding a local minimum. Finally, several numerical examples are provided to illustrate the results. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 144–158, 2001  相似文献   
2.
We establish various inventory replenishment policies to solve the problem of determining the timing and number of replenishments. We then analytically compare various models, and identify the best alternative among them based on minimizing total relevant costs. Furthermore, we propose a simple and computationally efficient optimal method in a recursive fashion, and provide two examples for illustration. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 791–806, 1997  相似文献   
3.
Consider a threshold control policy for an imperfect production system with only a work center handling both regular and rework jobs. An imperfect production system studied here, generates defect jobs by factors other than machine failures. A threshold control or (ω, s) policy sets the guideline for a work center to switch between regular and rework jobs. A production cycle begins with loading and processing of several batches of regular jobs with a lot size equal to s. The outcome of each completed regular job is an independent Bernoulli trial with three possibilities: good, rework, or scrap. Once the work center accumulates more than a threshold ω of rework jobs, it finishes the last batch of regular jobs and switches to rework jobs. The objective of this research is to find a threshold ω and a lot size s that maximize the average long‐term profit. The ultimate goal is to construct a simple algorithm to search for ω and s that can be implemented directly in production management systems, as a result of this work. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 273–301, 1999  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号