首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Within a panel VAR framework and utilizing generalized impulse response and forecast error variance decomposition analysis, we explore the dynamic effects of terrorism and crime on public order and safety spending across European countries during the period 1994–2006. Our findings show that a ‘shock’ in terrorism and/or in crime, significantly increases the subsequent trajectory of public order and safety spending. As a by-product, we find that public spending is ineffective in reducing observed crime or terrorism.  相似文献   
2.
Consider a set of vertices V = {1, 2,…, n} placed on a two-dimensional Euclidean plane R2 with each vertex attached a nonnegative weight w: VR. For a given constant d>0, the geometric graph G = (V, E) is defined to have edge set E = {(i, j): dijd} with dij being the Euclidean distance between vertices i and j. The geometric vertex packing (GVP) problem, which is often called the independent set problem, is defined as selecting the set of pairwise nonadjacent vertices with maximum total weight. We limit our attention to the special case that no vertex is within a distance βd of any other vertices where 0 ⩽ β < 1. A special value of β (= 1/2) is referred to frequently because of its correspondence to a manufacturing problem in circuit board testing. In this article we show that the weighted vertex packing problem for the specially structured geometric graph (SGVP) defined with the above restriction is NP-complete even for the case that all vertex weights are unity and for any β. Polynomial procedures have been designed for generating cuts to obtain tight LP upper bounds for the SGVP. Two heuristics with bounded worst-case performance are applied to the LP solution to produce a feasible solution and a lower bound. We then use a branch-and-bound procedure to solve the problem to optimality. Computational results on large-scale SGVP problems will be discussed. © 1995 John Wiley & Sons, Inc.  相似文献   
3.
In this paper we present several 1‐median formulations on a tree network which incorporate dynamic evolution and/or uncertainty of node demands and transportation costs over a planning horizon. Dynamic evolution is modeled using linear demand functions for the nodes and linear length functions for the edges. Uncertainty is modeled with the use of multiple scenarios, where a scenario is a complete specification of the uncertain node demands and/or edge lengths. We formulate our objective using minimax regret like criteria. We use two different criteria, namely, robust deviation and relative robustness. We discuss what motivated the introduction of these objectives, as well as their relation to existing literature and decision making practices. For all of the models presented, we provide low‐order polynomial time algorithms. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 147–168, 1999  相似文献   
4.
In this paper we address the cyclic scheduling problem in flow lines. We develop a modeling framework and an integer programming formulation of the problem. We subsequently present exact and approximate solution procedures. The exact solution procedure is a branch-and-bound algorithm which uses Lagrangian and station-based relaxations of the integer programming formulation of the problem as the lower bounding method. Our heuristic procedures show a performance superior to the available ones in the literature. Finally, we address the stability issue in cyclic scheduling, demonstrate its relationship to the work-in-progress inventory control of a flow line, and present a very simple procedure to generate stable schedules in flow lines. © 1996 John Wiley & Sons, Inc.  相似文献   
5.
In this article we address the non-preemptive flow shop scheduling problem for minimization of the sum of the completion times. We present a new modeling framework and give a novel game-theoretic interpretation of the scheduling problem. A lower-bound generation scheme is developed by solving appropriately defined linear assignment problems. This scheme can also be used as a heuristic approach for the solution of the problem with satisfactory results. Its main use, however, is as a bounding scheme within a branch-and-bound procedure. Our branch-and-bound procedure improves significantly upon the best available enu-merative procedures in the current literature. Extensive computational results are used to qualify the above statements. © 1993 John Wiley & Sons, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号