首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2013年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有4条查询结果,搜索用时 281 毫秒
1
1.
A method of life testing is proposed which combines both ordinary and accelerated life-testing procedures. It is assumed that an item can be tested either in a standard environment or under stress. The amount of stress is fixed in advance and is the same for all items to be tested However, the time x at which an item on lest is taken out of the standard environment and put under stress can be chosen by the experimenter subject to a given cost structure. When an item is put under stress its lifetime is changed by the factor α. Let the random variable T denote the lifetime of an item in the standard environment, and let γ denote its lifetime under the partially accelerated test procedure just described. Then Y = T if Tx, and Y = x + α (T > x) if T > x. It is assumed that T has an exponential distribution with parameter θ. The estimation of θ and α and the optimal design of a partially accelerated life test are studied in the framework of Bayesian decision theory.  相似文献   
2.
Since 2004, the Indian government has described the country's Maoist insurgency as a grave threat to domestic security. A study of the sustaining dynamics behind Maoist violence suggests that the rebels are growing operationally stronger due to profits derived from organized crime. Having built up a parasitic economy that operates within the boundaries of nominal state control, they are proceeding to undermine that same control. In effect, the Maoists have assumed characteristics of a Mafia group. With India's economic growth having surged in recent years, their ability to finance aggressive operations and consolidate their subversive infrastructure has increased correspondingly.  相似文献   
3.
Composite solid propellants (CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides (MOs), complexes, metal powders and metal alloys have shown positive catalytic behaviour during the com-bustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号