首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2017年   2篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is N P‐hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst‐case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two‐machine flow shop and the open shop problems with a single server are also shown to be N P‐hard in the strong sense. However, we reduce the two‐machine flow shop no‐wait problem with a single server to the Gilmore—Gomory traveling salesman problem and solve it in polynomial time. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 304–328, 2000  相似文献   
2.
Phosphate rocks are predominantly mined for fertilizer production. However, they also contain considerable amounts of accompanying natural uranium that can exceed concentrations found at commercial uranium mines. Extracting uranium from phosphate rocks during fertilizer production is a technically mature process; it was used on an industrial scale in the United States and elsewhere before decreasing uranium prices made this practice unprofitable in the 1990s. Soon, technical improvements, potentially rising uranium prices, and anticipated environmental regulations may make uranium extraction from phosphates profitable again in the United States and emerging phosphate rock mining centers in Northern Africa and the Middle East. Extracting uranium during phosphate fertilizer production is desirable in a way that otherwise lost resources are conserved and fertilizers with reduced radiotoxic heavy metal content are produced. Phosphate rocks have also been subject to clandestine uranium acquisition. In this work, the relevance of unconventional uranium resources from phosphate rocks is reviewed. A brief overview of the extraction process, a list of the required materials, and a very simple estimation of the amounts of uranium that could be extracted using a container-sized pilot plant which can be integrated into existing fertilizer plants is provided. Lastly, past known unreported uranium extraction activities from phosphate rocks are discussed.  相似文献   
3.
We consider a problem of scheduling jobs on m parallel machines. The machines are dedicated, i.e., for each job the processing machine is known in advance. We mainly concentrate on the model in which at any time there is one unit of an additional resource. Any job may be assigned the resource and this reduces its processing time. A job that is given the resource uses it at each time of its processing. No two jobs are allowed to use the resource simultaneously. The objective is to minimize the makespan. We prove that the two‐machine problem is NP‐hard in the ordinary sense, describe a pseudopolynomial dynamic programming algorithm and convert it into an FPTAS. For the problem with an arbitrary number of machines we present an algorithm with a worst‐case ratio close to 3/2, and close to 3, if a job can be given several units of the resource. For the problem with a fixed number of machines we give a PTAS. Virtually all algorithms rely on a certain variant of the linear knapsack problem (maximization, minimization, multiple‐choice, bicriteria). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
4.
We study a two‐machine flow shop scheduling problem with no‐wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst‐case ratio of 3/2. For the second scenario, we offer a 4/3‐approximation algorithm. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
5.
In this article, we consider a single machine scheduling problem, in which identical jobs are split into batches of bounded sizes. For each batch, it is allowed to produce less jobs than a given upper bound, that is, some jobs in a batch can be rejected, in which case a penalty is paid for each rejected job. The objective function is the sum of several components, including the sum of the completion times, total delivery cost, and total rejection cost. We reduce this problem to a min‐cost flow problem with a convex quadratic function and adapt Tamir's algorithm for its solution. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 217–224, 2017  相似文献   
6.
We consider the two‐machine open shop scheduling problem in which the jobs are brought to the system by a single transporter and moved between the processing machines by the same transporter. The purpose is to split the jobs into batches and to find the sequence of moves of the transporter so that the time by which the completed jobs are collected together on board the transporter is minimal. We present a ‐approximation algorithm. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号