首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2006年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
《防务技术》2022,18(9):1679-1687
Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride (GF) as surface activated materials are employed to coat boron (B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO3 and GF coated B/KNO3 are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO3 (823.39 J/g). The ignition delay time of B/KNO3 could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO3 (109 ms). However, the ignition delay time of B/KNO3 coated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO3. Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO3 coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism.  相似文献   
2.
《防务技术》2020,16(1):178-187
An experimental platform of a pulse detonation engine (PDE) was established to study the effect of different K2CO3 ionized seed mass contents on the detonation process. The pressure and ion concentration were detected in the detonation process of the PDE with different contents of ionized seeds. The initiation process of the PDE at different ignition frequencies was studied. The results show that the gas conductivity in the detonation process increased by adding ionized seeds to the PDE tube, and the conductivity increased with the increase in ionized seed mass content. With the increase in ionized seed mass content, the range of the conductivity decreased. The PDE was successfully ignited and formed a stable detonation wave at ignition frequencies of 5 Hz and 10 Hz, and the peak pressure of the stable detonation with the ignition frequency of 5 Hz was 17% higher than that with an ignition frequency of 10 Hz. The detonation wave intensity was weakened and degenerated to a shock wave that propagated in the tube without the fuel filled at the ignition frequency of 20 Hz.  相似文献   
3.
4.
《防务技术》2022,18(9):1538-1545
3-nitro-1,2,4-tri-azol-5-one (NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1 (32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity (7746 m/s) and the parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shock-initiation gap experiment and numerical simulation. The determined trinomial ignition and growth model (IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.  相似文献   
5.
MgH2, TiH2, and ZrH2 are three typical metal hydrides that have been gradually applied to composite explosives and propellants as additives in recent years. To evaluate ignition sensitivity and explosion severity, the Hartmann device and spherical pressure vessel were used to test ignition energy and ex-plosion pressure, respectively. The results showed that the ignition sensitivity of ZrH2, TiH2 and MgH2 gradually increased. When the concentration of MgH2 is 83.0 g/m3 in Hartmann device, the ignition energy attained a minimum of 10.0 mJ. The explosion pressure of MgH2 were 1.44 times and 1.76 times that of TiH2 and ZrH2, respectively, and the explosion pressure rising rate were 3.97 times and 9.96 times that of TiH2 and ZrH2, respectively, through the spherical pressure vessel. It indicated that the reaction reactivity and reaction rate of MgH2 were higher than that of TiH2 and ZrH2. In addition, to conduct in-depth theoretical analysis of ignition sensitivity and explosion severity, gas production and combus-tion heat per unit mass of ZrH2, TiH2 and MgH2 were tested by mercury manometer and oxygen bomb calorimetry. The experimental results revealed that MgH2 had a relatively high gas production per unit mass (5.15 mL/g), while TiH2 and ZrH2 both had a gas production of less than 2.0 mL/g. Their thermal stability gradually increased, leading to a gradual increase in ignition energy. Furthermore, compared with theoretical combustion heat, the combustion ratio of MgH2, TiH2 and ZrH2 was more than 96.0%, with combustion heat value of 29.96, 20.94 and 12.22 MJ/kg, respectively, which was consistent with the explosion pressure and explosion severity test results.  相似文献   
6.
大气层内燃气动力与气动力复合控制方法探讨   总被引:1,自引:0,他引:1  
对采用燃气动力(直接力)与气动力复合控制技术的控制方式、姿控发动机控制周期、点火逻辑及姿控发动机启控策略等进行了初步探讨。重点对采用燃气动力/气动力复合控制方式中舵系统的工作模式进行了探讨及仿真研究,对姿控发动机控制周期及控制回路工作周期对制导精度的影响进行了初步仿真研究。通过仿真研究表明:在末制导阶段,采用燃气动力/气动力复合控制方式可提高导弹的快速性,进而提高导弹的制导控制精度。  相似文献   
7.
采用考虑固体点火药燃烧过程的再生式液体发射药火炮(RLPG)膛内再生喷射燃烧过程的零维数学模型,研究了点火具参数对RLPGG点火过程的影响,分析并揭示了点火具参数对点火性能的影响规律.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号