首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
《防务技术》2022,18(12):2198-2202
In view of the difficulty of kerosene-air detonation faced by the application of rotating detonation to aviation engines, in order to improve the kerosene detonation activity, the atmospheric pressure gliding arc plasma is used to conduct secondary adjustment of the pre-combustion cracking products. The results show that the components with larger molecular weight in the pre-combustion cracking products, such as ethylene and methane, can be cracked into highly active species of hydrogen and acetylene by gliding arc plasma. With the increase of the fuel ratio of pre-combustion cracking, the plasma has a more significant effect on the adjustment of high active components. However, as the flow rate of the cracking gas treated by plasma increases, the adjustment effect is obviously reduced.  相似文献   
2.
In this paper, the kerosene/air rotating detonation engines(RDE) are numerically investigated, and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation, instabilities, and propulsive performance. A hybrid MPI + OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC) systems. A series of cases with the total pressure of 1 MPa, 1.5 MPa, 2 MPa, and the equivalence ratio of 0.9, 1, 1.4 are simulated. On one hand, the total pressure shows a significant impact on the instabilities of rotating detonation waves. The instability phenomenon is observed in cases with low total pressure (1 MPa) and weakened with the increase of the total pressure. The total pressure has a small impact on the detonation wave velocity and the specific impulse. On the other hand, the equivalence ratio shows a negligible influence on the instabilities, while it affects the ignition process and accounts for the detonation velocity deficit. It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition. Little difference was observed in the thrust with different equivalence ratios of 0.9, 1, and 1.4. The highest specific impulse was obtained in the lean fuel cases, which is around 2700 s. The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号