首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
《防务技术》2022,18(9):1679-1687
Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride (GF) as surface activated materials are employed to coat boron (B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO3 and GF coated B/KNO3 are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO3 (823.39 J/g). The ignition delay time of B/KNO3 could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO3 (109 ms). However, the ignition delay time of B/KNO3 coated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO3. Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO3 coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism.  相似文献   
2.
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate. Metal powders' explosive properties and reaction mechanisms in FAE were studied by high-speed video, pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700 ℃, which was higher than that of the pure liquid fuels. After replacing 30%of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.  相似文献   
3.
Presented herein is an experimental study on the combustion of B4C/KNO3 binary pyrotechnic system.Combustion products were tested using X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometer(EDS).According to the results of tests and CEA calculation,the combustion reaction equation was established.The flames and burning rates were recorded by a high speed camera and a spectrophotometer.The effect of B4C particle size on the thermal sensitivity of B4C/KNO3 was investigated by differential scanning calorimetry(DSC)techniques.In addition,a reliable method for calculating the flame temperature was proposed.Based on the results of experiments,the combustion reaction mechanism was briefly analyzed.The burning rate,flame temperature and thermal sensitivity of B4C/KNC3 increase with the decrease of B4C particle size.The mass ratio of B4C/KNO3 has a great effect on combustion properties.Oxidizer-rich compositions have low flame temperatures,low burning rates,and provide green light emission.The combustion reactions of fuel-rich compositions are vigorous,and the B4C/KNO3 with mass ratio of 25:75 has the highest burning rate and the highest flame temperature.  相似文献   
4.
《防务技术》2020,16(3):635-641
Among practical metal additives, boron (B) has a high volumetric heating value, making it a promising choice as a fuel additive. Although B can theoretically yield a large amount of energy upon complete combustion, its combustion is retarded by the initial presence of B oxide, which coats the surfaces of B particle. To improve the ignition and combustion properties of B powder, LiOH and NH4F were used as precursors to synthesize uniformly LiF-coated B composites (LiF-B) in situ. The LiF-B mixture was also prepared for comparison using a physical method. X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize the morphologies and compositions of the products. The thermal and combustion properties of the samples were characterized by thermal gravity-differential thermal gravity (TG-DTG), differential scanning calorimetry (DSC) and closed bomb experiment. The XRD, FTIR, SEM and EDS results demonstrated the successful preparation of the coated LiF-B sample. The TG-DTG and closed bomb experiment results indicated that the addition of LiF decreased the ignition temperature of B powder, and increasing its reaction efficiency. DSC results show that when LiF-B was added, the released heat of underwater explosive increased by 6727.2, 7280.4 and 3109.6 J/g at heating rates of 5, 10, and 15 °C/min, respectively. Moreover, LiF-B decreased the activation energy of secondary combustion reaction of explosive system as calculated through Kissinger's method by 28.9%, which indicated an excellent catalytic effect for the thermal decomposition of underwater explosive. The results reveal that LiF can improve the combustion efficiency of B powder, thereby increasing the total energy of explosives. The mechanical sensitivity increased slightly after adding LiF-B to the underwater explosive. Compared to the underwater explosive with added B, the mechanical sensitivity of the explosive with added LiF-B was significantly lower.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号