首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
《防务技术》2022,18(10):1886-1894
Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane (CL-20) by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants. In this study, we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film (NCS) and emphatically studied the thermal decomposition performance of the composite structure. Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure. The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS. These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20. Among the tested samples, NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20. Moreover, the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process. And a possible catalytic mechanism was proposed. The excellent thermal decomposition performance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS. This work may promote the extensive use of CL-20 in the field of solid rocket propellant.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号