首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Abstract

This paper employs the concept of smart power to construct an analytical framework for assessing wartime alliance management. It makes two arguments. First, wartime sources of soft power differ from those obtaining during peacetime. Second, the coerciveness with which an alliance leader wields hard power towards actual or prospective allies should vary inversely with the amount of soft power it possesses. The smart power framework illuminates three types of alliance management failure. The paper’s key contentions are illustrated with examples furnished from the record of US alliance leadership since World War II.  相似文献   
2.
One of the central debates in contemporary international relations scholarship concerns the issue of whether balancing has occurred in response to US-based unipolarity, and if it has, how this should be characterised. Existing research has seen analysts argue that major power responses to unipolarity can be placed in one of either three categories: an absence of balancing, soft balancing, and hard balancing. This article contributes to the scholarly literature by providing a case study of hard internal Russian balancing against the US’s development and deployment of Ballistic Missile Defense (BMD) systems during the Bush Administration (2001–08). Russian hard balancing against the US has involved: (1) fielding new strategic nuclear and conventional weapons equipped with BMD countermeasures, and, relatedly, (2) making changes in military doctrine. As a result, security dilemma dynamics are increasingly in evidence in US relations with Russia.  相似文献   
3.
《防务技术》2019,15(3):241-253
This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve – a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in on-going developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.  相似文献   
4.
Ian G.Crouch 《防务技术》2021,17(6):1887-1894
The ballistic performance, and behaviour, of an armour system is governed by two major sets of variables, geometrical and material. Of these, the consistency of performance, especially against small arms ammunition, will depend upon the consistency of the properties of the constituent materials. In a body armour system for example, fibre diameter, areal density of woven fabric, and bulk density of ceramic are examples of critical parameters and monitoring such parameters will form the backbone of associated quality control procedures. What is often overlooked, because it can fall into the User’s domain, are the interfaces that exist between the various products; the carrier, the Soft Armour Insert (SAI), and the one or two hard armour plates (HAP1 and HAP2). This is especially true if the various products are sourced from different suppliers.There are between 30 and 150 individual layers within a typical body armour system, and each of the interfaces between each of those layers will, in some way or another, contribute to the ballistic performance of the system. For example, consider the following interfaces/interlayers: (i) the frictional, sliding, inter-ply surfaces within a soft armour pack, and also between the pack and the carrier, (ii) the air-gaps that may develop within the soft armour pack, (iii) the interconnecting space between the soft armour pack and the hard armour plate, (iv) the nature of the interfaces between adjacent plies of a multiplied backing laminate, even in a highly compressed Ultra High Molecular Weight Polyethylene (UHMWPE) variant, (v) the interlayer between the ceramic and its substrate, within a HAP, and (vi) the geometrical fit between two hard armour plates within a stacked body armour system. This paper will provide a User-friendly overview of all such interfaces and provide unique guidance as to their criticality and influence.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号