首页 | 本学科首页   官方微博 | 高级检索  
     

一种GMM-SVM混合说话人辨认模型
引用本文:冷自强,王金明,林大会. 一种GMM-SVM混合说话人辨认模型[J]. 军事通信技术, 2009, 0(1)
作者姓名:冷自强  王金明  林大会
作者单位:解放军理工大学通信工程学院研究生1队;解放军理工大学通信工程学院电子信息工程系;解放军理工大学通信工程学院研究生3队;
摘    要:
文中提出了一种GMM和SVM混合说话人识别模型,在特征参数域和概率得分域对两种模型进行了融合。混合模型结合了GMM和SVM各自的优势,使SVM的概率输出兼顾各说话人模型内部和模型之间的信息,并有效解决了SVM训练算法复杂,难以处理大量样本的问题。采用TIMIT数据库进行了说话人辨认实验,结果证明本文提出的GMM-SVM模型比传统的GMM模型和SVM模型具有更好的辨识性能。

关 键 词:说话人辨认  支持向量机  高斯混合模型  

Speaker Identification Model Based on GMM-SVM
LENG Zi-qiang,WANG Jin-ming,LIN Da-hui. Speaker Identification Model Based on GMM-SVM[J]. Journal of Military Communications Technology, 2009, 0(1)
Authors:LENG Zi-qiang  WANG Jin-ming  LIN Da-hui
Affiliation:1.Postgraduate Team 1 ICE;PLAUST;Nanjing 210007;China;2.Department of Electronic Information Engineering ICE;3.Postgraduate Team 3 ICE;PLAUST
Abstract:
A hybrid speaker recognition model based on GMM and SVM was presented.GMM and SVM were mixed in both feature parameter and likelihood score domain.The new model combined the advantages of GMM and SVM,making the SVM output probabilities contain both the information inside and between the speaker models. The problem that SVM training algorithm is too complex to deal with large number of training data was resolved.The GMM-SVM model was tested on the TIMIT database and showed better performance than GMM and SVM...
Keywords:speaker identification  support vector machine  Gaussian mixture model  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号