摘 要: |  针对在对时变非线性系统进行状态估计以及参数学习时估计误差大、抗干扰能力差等问题,提出一种面向非线性系统的精确稀疏高斯变分推理的批量状态估计与参数学习方法。基于高斯变分推理提出损失函数,状态估计问题转化为对真实后验近似问题,并引入需要学习的参数。对状态概率分布的参数使用高斯-牛顿式优化器的方法进行迭代更新,利用Stein引理、协方差矩阵的稀疏性及高斯容积方法得到完整的状态估计迭代方案。 使用期望最大化学习测量模型的噪声参数,同时引入逆Wishart先验减少测量噪声和离群值对参数学习以及状态估计结果的影响。通过对无人机仿真模型进行模拟实验,在不加入无人机运动以及测量噪声真实值的情况下,对无人机轨迹能够进行精确的估计,且有效抑制测量噪声和测量离群值对轨迹估计精度带来的影响。

|