首页 | 本学科首页   官方微博 | 高级检索  
     

基于CPU-GPU混合计算平台的RNA二级结构预测算法并行化研究
作者姓名:夏飞  朱强华  金国庆
作者单位:海军工程大学 电子工程学院,海军工程大学 电子工程学院,海军工程大学 电子工程学院
基金项目:基于异构平台的高复杂度生物序列分析算法并行化研究(基金编号:61202127)
摘    要:RNA二级结构预测是生物信息学领域重要的研究方向,基于最小自由能模型的Zuker算法是目前该领域最典型使用最广泛的算法之一。本文基于CPU GPU的混合计算平台实现了对Zuker算法的并行和加速。根据CPU和GPU计算性能的差异,通过合理的任务分配策略,实现二者之间的并行协作计算和处理单元间的负载平衡;针对CPU和GPU的不同硬件特性,对Zuker算法在CPU和GPU上的实现分别采取了不同的并行优化方法,提高了混合加速系统的计算性能。实验结果表明,CPU处理单元在混合系统中承担了14%以上的计算任务,与传统的多核CPU并行方案相比,采用混合并行加速方法可获得15.93的全局加速比;与最优的单纯GPU加速方案相比,可获得16%的性能提升,并且该混合计算方案可用于对其它生物信息学序列分析应用的并行和加速。

关 键 词:生物信息学  RNA二级结构预测  最小自由能  混合加速方法
收稿时间:2013-01-29
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号