高性能异构加速器MiniGo算子优化方法 |
| |
作者姓名: | 乔鹏 贺周雨 李荣春 姜晶菲 |
| |
作者单位: | 国防科技大学 计算机学院,湖南 长沙 410073;国防科技大学 并行与分布计算全国重点实验室,湖南 长沙 410073 |
| |
基金项目: | 国家重点实验室稳定支持资助项目(WDZC20205500104) |
| |
摘 要: | 根据高性能异构加速器的特性和MiniGo的训练模式提出了一种高效的并行计算方法。对片上计算资源进行合理规划,实现异构设备之间的流水并行优化;根据异构设备间存在共享存储段设计了共享内存编码模式,减少数据传输开销;根据数字信号处理簇内具有多计算资源的特点结合算子计算-访存特性设计了不同的算子并行计算优化策略。同时,面向TensorFlow实现了一个易于使用的高性能计算库。实验结果显示,该方法实现了典型算子的多核并行计算。相对于单核,卷积算子加速比为24.69。相较于裁剪版8核FT2000+CPU,该方法训练和自博弈执行速度加速比分别为3.83和1.5。
|
关 键 词: | 异构计算 算子优化 卷积神经网络 强化学习 |
收稿时间: | 2022-12-15 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《国防科技大学学报》浏览原始摘要信息 |
|
点击此处可从《国防科技大学学报》下载免费的PDF全文 |
|