摘 要: | 基于图的分割算法(Graph-Based Segmentation,GBS)算法)是由Felzenszwalb和Huttenlocher提出的经典的图像分割算法之一,但其分割结果中存在明显的欠分割现象。为此,在GBS算法的基础上引入层次聚类(Hierarchical Clustering,HC)算法,构造出一种解决GBS算法欠分割的方法,同时采用多线程并行处理数据的方式,有效改善了传统层次聚类算法的处理速度。该方法在RGB彩色空间中使用GBS算法得到图像中每个像素点的初始分割结果,并提取出每一类区域中的像素值,对其进行层次聚类,得到每一类区域中像素值的类别标签,根据层次聚类所得到的类别标签和预设的类别范围,修改每个像素点的初始分割结果。最后根据区域合并准则,生成一个新的分割图。经实验表明,该方法与Kmeans-SLIC(simple linear iterative clustering)算法和GBS算法等相比,很好地解决了欠分割现象,并产生了分割精度较高的语义分割图。
|