首页 | 本学科首页   官方微博 | 高级检索  
     

边缘化粒子概率假设密度滤波的多目标跟踪
作者姓名:于洋  宋建辉  刘砚菊  司冠楠
作者单位:1.沈阳理工大学自动化与电气工程学院
基金项目:国家自然科学基金,辽宁省教育厅基金资助项目
摘    要:针对复杂情况下的多目标跟踪问题,提出一种边缘化粒子概率假设密度滤波(MPF-PHD)方法。该方法首先将复杂情况下多个目标的状态向量分别提取出其中的非线性状态与线性状态。然后利用粒子概率假设密度滤波(PF-PHD)估计非线性状态,利用卡尔曼滤波(KF)估计线性状态,并把其中与非线性状态相关的线性状态估计用来优化非线性状态估计。通过对MPF-PHD方法与传统的PF-PHD方法仿真对比,验证了MPF-PHD方法有效解决了复杂情况下多目标跟踪的漏检问题,提高了多目标状态估计精度。

关 键 词:边缘化粒子概率假设密度滤波  多目标跟踪  非线性状态估计  卡尔曼滤波
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《火力与指挥控制》浏览原始摘要信息
点击此处可从《火力与指挥控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号