基于混合数据挖掘模型预测用户流失 |
| |
作者姓名: | 董博 王雪 |
| |
作者单位: | 1.辽宁大学计算中心;2.辽宁大学信息化中心 |
| |
基金项目: | 第54批中国博士后科学基金,教育部博士点基金,教育部基本科研业务费项目重大科技创新基金资助项目 |
| |
摘 要: | 用户流失预测问题广泛应用在银行、金融、电信等多种领域。对用户行为进行有效的预测和分析有助于企业的竞争和了解瞬息万变的市场规律。采用3种混合的数据挖掘模型对用户流失问题进行了研究,以形成一个准确高效的用户流失预测模型。这3种模型应用于数据挖掘的两个阶段:聚类阶段和预测分析阶段。在第1阶段中,对用户的数据进行过滤。第2阶段对用户行为进行预测。第1个模型采用了二分k-means算法进行数据过滤和多层感知人工神经网络(MLP-ANN)相结合进行预测。第2个模型采用层次化聚类与MLP–ANN相结合进行预测。第3个模型使用自组织映射(Self-Organizing Maps)与MLP-ANN进行预测。这3种模型预测分析基于真实数据,用户流失率采用3种模型混合计算的方式得出结果并同真实值进行比较。分析结果表明采用多模型的混合数据挖掘模型的数据准确度优于普通的单一模型。
|
关 键 词: | 数据挖掘 用户流失 人工神经网络 多层次感知 自组织地图 |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《火力与指挥控制》浏览原始摘要信息 |
|
点击此处可从《火力与指挥控制》下载全文 |
|