首页 | 本学科首页   官方微博 | 高级检索  
     


Inventory policies with quantized ordering
Authors:Yu-Sheng Zheng  Fangruo Chen
Abstract:This article studies (nQ, r) inventory policies, under which the order quantity is restricted to be an integer multiple of a base lot size Q. Both Q and r are decision variables. Assuming the one-period expected holding and backorder cost function is unimodal, we develop an efficient algorithm to compute the optimal Q and r. The algorithm is facilitated by simple observations about the cost function and by tight upper bounds on the optimal Q. The total number of elementary operations required by the algorithm is linear in these upper bounds. By using the algorithm, we compare the performance of the optimal (nQ, r) policy with that of the optimal (s, S) policy through a numerical study, and our results show that the difference between them is small. Further analysis of the model shows that the cost performance of an (nQ, r) policy is insensitive to the choice of Q. These results establish that (nQ, r) models are potentially useful in many settings where quantized ordering is beneficial.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号