首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于混合概率PCA模型的高光谱图像非监督分类方法
作者姓名:吴昊  郁文贤  匡纲要
作者单位:国防科技大学,电子科学与工程学院,湖南,长沙,410073;国防科技大学,电子科学与工程学院,湖南,长沙,410073;国防科技大学,电子科学与工程学院,湖南,长沙,410073
摘    要:提出了一种在期望最大化(EM)算法框架下同时实现混合概率主成分分析(PPCA)降维和聚类的高光谱图像非监督分类方法。它根据不同类别应各有自己代表性的特征集,将通常意义下的特征抽取和模式分类合并在一步内完成,尽可能地保留了可分性;同时该方法具有概率模型的优点,更适合高维数据处理。采用仿真数据和真实数据进行的比较实验表明,该算法较一般不加区分地对所有原始数据进行PCA降维再分类的方法能得到更好的分类结果。

关 键 词:非监督分类  降维  混合概率主成分分析  期望最大化算法
文章编号:1001-2486(2005)02-0061-04
收稿时间:2004-11-13
修稿时间:2004-11-13
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号