首页 | 本学科首页   官方微博 | 高级检索  
     

基于估计协方差MME检测的频谱感知算法
引用本文:姚少林,张政保,许鑫,刘广凯. 基于估计协方差MME检测的频谱感知算法[J]. 火力与指挥控制, 2016, 0(5). DOI: 10.3969/j.issn.1002-0640.2016.05.017
作者姓名:姚少林  张政保  许鑫  刘广凯
作者单位:军械工程学院,石家庄,050003
摘    要:针对小采样数据长度下,采样协方差矩阵对统计协方差矩阵估计不准,影响传统最大最小特征值(MME)检测算法检测性能的问题,提出一种基于逼近收缩(OAS)矩阵估计的改进MME检测算法。首先利用OAS估计量对采样数据做协方差矩阵估计,再对估计协方差矩阵特征值分解,将最大最小特征值之比作为检测统计量,克服了传统MME算法检测门限随采样点大幅波动的缺陷,提高了检测门限的鲁棒性。仿真结果表明,所提算法的检测门限具有鲁棒性,检测性能提高了1 d B~2 d B。

关 键 词:认知无线电  频谱感知  最大最小特征值  协方差矩阵估计  随机矩阵理论

Spectrum Sensing Algorithm Based on Estimated Covariance Matrix MME Detection
Abstract:Aiming at the problem that the inaccurate estimation of sample covariance matrix for the statistical covariance matrix could lead to poor detection performance of the MME detection algorithm while sampling data length is small,a spectrum sensing algorithm based on estimated covariance matrix MME detection is proposed. First,the OAS estimator is used to estimate the statistical covariance matrix of sampling data. Then,the eigenvalue decomposition for the estimated covariance matrix is made. Finally,the ratio of maximum eigenvalue and minimum eigenvalue is taken as the detection statistic,which overcomed the defects that the detection threshold of the traditional MME algorithm fluctuate sharply with the sampling point incearcing,improved the robustness of the detection threshold. Simulation results show that the proposed algorithm has a robust detection threshold. Meanwhile,the detection performance was improved by 1 dB~2 dB.
Keywords:cognitive radio  spectrum sensing  Maximum-Minimum Eigenvalue(MME)  covariance matrix estimation  Random Matrix Theory(RMT)
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号