首页 | 本学科首页   官方微博 | 高级检索  
     

尺度自适应特征压缩跟踪
作者姓名:张路平  韩建涛  李飚  王鲁平
作者单位:国防科技大学 电子科学与工程学院,国防科技大学 电子科学与工程学院,国防科技大学 电子科学与工程学院,国防科技大学 电子科学与工程学院
基金项目:国家863计划资助项目,国家部委资助项目
摘    要:为在复杂环境中对目标进行长时间精确跟踪,提出一种尺度自适应特征压缩跟踪算法。通过结构约束性采样,获取不同尺度不同位置的扫描窗,离线计算不同尺度下的稀疏随机感知矩阵。在线跟踪时利用这些矩阵感知对应尺度的图像采样块,实现特征降维,提高运算速度。利用朴素贝叶斯分类器对降维特征判决,在线学习更新分类器参数,找出具有最高分类得分的采样块作为新的跟踪结果,实现跟踪位置及尺度的自适应更新。实验结果表明,该算法能适应目标的基本姿态变化及尺度缩放,不依赖于目标初始跟踪区域尺度选取,跟踪结果具有较强的鲁棒性。

关 键 词:特征压缩跟踪  尺度自适应  结构约束性采样  稀疏随机感知矩阵  朴素贝叶斯分类器
收稿时间:2013-03-01
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号