摘 要: | 为了对降落伞充气展开过程中的开伞载荷进行更加准确的预测,提出一种基于循环神经网络的开伞载荷补偿计算方法,包括模型架构和数据处理方式。该方法将充气时间法计算的预测值代入循环网络进行二次计算,使最终结果能够更加贴近试验真值。使用多层前馈网络、标准循环网络与长短时记忆网络三种网络进行比较,验证了所提模型预测结果的适用性和准确性,研究了学习率、输入层维度和隐层维度等超参数对模型性能的影响,并给出了基于长短时记忆网络的补偿模型最优训练条件。实验结果表明,利用循环网络进行开伞载荷预测具有较好的拟合结果,为机器学习与降落伞工业的学科交叉研究提供了一定的参考方向。
|