首页 | 本学科首页   官方微博 | 高级检索  
     

利用循环网络的降落伞开伞载荷补偿方法
作者姓名:姜添  李健  戈嗣诚
作者单位:北京空间机电研究所,北京 100094
基金项目:国家自然科学基金资助项目(11972192)
摘    要:为了对降落伞充气展开过程中的开伞载荷进行更加准确的预测,提出一种基于循环神经网络的开伞载荷补偿计算方法,包括模型架构和数据处理方式。该方法将充气时间法计算的预测值代入循环网络进行二次计算,使最终结果能够更加贴近试验真值。使用多层前馈网络、标准循环网络与长短时记忆网络三种网络进行比较,验证了所提模型预测结果的适用性和准确性,研究了学习率、输入层维度和隐层维度等超参数对模型性能的影响,并给出了基于长短时记忆网络的补偿模型最优训练条件。实验结果表明,利用循环网络进行开伞载荷预测具有较好的拟合结果,为机器学习与降落伞工业的学科交叉研究提供了一定的参考方向。

关 键 词:降落伞  开伞载荷  补偿方法  循环神经网络  长短时记忆网络
收稿时间:2020-09-10
本文献已被 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号