首页 | 本学科首页   官方微博 | 高级检索  
     

基于层次方法和PCA特征变换的宫颈细胞识别
作者姓名:赵理莉
作者单位:国防科技大学计算机学院博士队
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:对宫颈细胞多分类,可以自动识别出不同状态的细胞,进而为宫颈癌诊断提供科学依据。在用6种多分类算法实验后,选取支持向量机(SVM)作为基分类器,先用一对一策略(one- versus -one)训练6个分类器进行3分类,然后再训练1个2分类器,这种二层4分类方法提高了识别准确率。又考虑不同层特征模式的差异性,在保证识别性能同时,每层分类前先采用主成分分析(PCA)法将原始154维特征变换到低维空间,去除冗余特征,加快识别速度。实验证明,所提层次PCA法在宫颈细胞分类中相比6种传统多分类方法有更高的识别准确率,可达90%以上;识别速度也较普通层次法提升了21.31%。

关 键 词:宫颈涂片图像  特征变换  层次多分类  宫颈细胞识别
收稿时间:2016-08-31
修稿时间:2016-11-28
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号