首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Numerical investigation of dynamic interaction with projectile and harmonic behaviour for T-finned machine gun barrels
Institution:Maulana Azad National Institute of Technology, Bhopal 462003, India
Abstract:Machine gun barrels differ from their rifle counterparts in terms of profile. To support high rates of sustained fire, machine gun barrels are made thicker in order to dissipate more heat and maintain their flexural rigidity and thus accuracy, but on other hand they also contribute in weight addition to weapon. This investigation deals with comparison between a conventional machine gun barrel and an improved innovative design having T-fins, both having same weight and chambered in 5.56 × 45 NATO ammunition, to compare their structural and harmonic characteristics which were parameterized by factors such as modal spectrum, directional deformation at muzzle ends during a single shot fire and harmonic behaviour at corresponding range of exciting frequencies. The solid models of both the barrels having same weight, were created using Solidworks. The continuous input data functions were generated by MATLAB using the field tested discreet data points. The generated velocity-distance functions were converted into time dependent functions using integration algorithms to calculate transient parameters such as time steps, excitation frequency range, angle of rotation of projectile and its angular velocity. The dynamic condition simulated the varying nature of forces due to eccentricity in projectile and this data was fed to a time step study using ANSYS transient structural work bench followed by modal and harmonic analysis. The results showed a significant reduction in muzzle end deformation which thus proved that the T-finned barrel, although had same weight as that of the conventional one, but had better structural and harmonic characteristics, and hence it would inherit better firing accuracy.
Keywords:FSHP  Machine guns  Pseudo-I section  Second order mesh  Transient behaviour
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号