首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Preparation of reduced sensitivity co-crystals of cyclic nitramines using spray flash evaporation
Institution:1. High Energy Materials Research Laboratory, Pune 411 021, India;2. Defence Institute of Advanced Technology, Pune 411 025, India
Abstract:The present day weapon technology demands novel energetic materials that exhibit simultaneous high explosive yield and reduced sensitivity. This article demonstrates application of spray evaporation to prepare reduced sensitive co-crystals of high performance nitramine explosives like HMX and CL-20 with a relatively less insensitive explosive 1,1-diamino-2,2-dinitroethylene or FOX-7. Stronger intermolecular hydrogen bonding in FOX-7 is responsible for limited solubility in most of organic solvents. Large solubility differences of FOX-7 with HMX and CL-20 restricts it's co-crystallization through classical methods that yields thermodynamically favorable product. Spray flash evaporation, a kinetic crystallization method, has been therefore adopted and could successfully produce CL-20/FOX-7 (2:1) and HMX/FOX-7 (4:1) co-crystals. The fine powdered materials obtained were characterized by SEM, powder XRD, Raman spectroscopy, DSC-TGA etc. Multipoint Raman spectra showed consistent occurrence of spectral features indicating stoichiometric co-existence of ingredients in the crystal lattices. DSC analysis showed absence of all thermally assisted solid-solid phase transformation in the co-crystals as they were observed in pristine materials. The thermal stability calculated in terms of activation barrier for decomposition, revealed the CL-20/FOX-7 co-crystal to be intermediately stable on comparison to their constituents while, the HMX/FOX-7 co-crystal is more stable. Compared to pure HMX and CL-20, both the co-crystals have shown higher insensitivity to impact force, suggesting them to be suitable for future generation insensitive munitions.
Keywords:Cyclic nitramine  Solubility  Spray evaporation  Co-crystal  Reduced sensitivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号