首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Design of infrared camouflage cloak for underground silos
Institution:Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, PR China
Abstract:The temperature difference between the exposed surface of an underground silo and the surrounding soil surface is significant, which means a silo can be easily found by infrared detection. We designed an infrared camouflage cloak consisting of an imitative layer and an insulation layer for the silos. The imitative layer is used to imitate the thermal response of the soil to the surrounding environment. The insulation layer is used to weaken the impact of the internal temperature field of the silo on the lower boundary of the imitative layer. A silo model including surrounding soil and a soil model without silo were established, and the influences of the material and thickness of each layer on the infrared camouflage effect were analyzed. The results show that when using a silicone rubber containing alumina powder with a volume fraction of 3.18% as the imitative material, its thermal inertia is in consistent with that of the soil. Meanwhile, it was found that the thickness of the imitative layer doesn’t need to be greater than its thermal penetration depth to achieve the infrared camouflage, and the absence of the insulation layer will cause hot spots on the silo surface in winter to weaken the camouflage effect. The optimized thicknesses of the imitative layer and the insulation layer are 22 cm and 4 cm respectively. The simulations indicate that with the application of the cloak, the maximum value of the absolute values of the temperature differences between the average temperatures of the silo surface and the surrounding soil surface temperatures drops from 1.59 °C to 0.31 °C in summer and from 1.92 °C to 0.21 °C in winter. This designed cloak can achieve an all-weather and full-time passive infrared camouflage.
Keywords:Underground silo  Infrared camouflage cloak  Imitative layer  Insulation layer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号