首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading
Institution:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:The increasing threat of explosions on the battle field and the terrorist action requires the development of more effective blast resistance materials and structures. Curved structure can support the external loads effectively by virtue of their spatial curvature. In review of the excellent energy absorption property of auxetic structure, employing auxetic structure as core material in curved sandwich shows the potential to improve the protection performance. In this study, a novel cylindrical sandwich panel with double arrow auxetic (DAA) core was designed and the numerical model was built by ABAQUS. Due to the complexity of the structure, systematic parameter study and optimal design are conducted. Two cases of optimal design were considered, case1 focuses on reducing the deflection and mass of the structure, while case2 focuses on reducing the deflection and increasing the energy absorption per unit mass. Parameter study and optimal design were conducted based on Latin Hypercube Sampling (LHD) method, artificial neural networks (ANN) metamodel and the nondominated sorting genetic algorithm (NSGA-Ⅱ). The Pareto front was obtained and the cylindrical DAA structure performed much better than its equal solid panel in both blast resistance and energy absorption capacity. Optimization results can be used as a reference for different applications.
Keywords:Auxetic structure  Blast response  Finite element analysis (FEA)  Optimal design
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号